
Manual

DX Tools

Application Design Guide 3

Author: Ian Tree

Owner: HMNL b.v.

Customer: Public

Status: QE

Date: 10/03/2015 15:46

Version: 3.14.0

Disposition: Open Source

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 2 of 60

Document Usage

This is an open source document you may copy and use the document or portions of the document for
any purpose.

Revision History

Date of this revision: 10/03/2015 15:46 Date of next revision None

Revision
Number

Revision
Date

Summary of Changes Changes
marked

0.1 24/01/12 Initial Base Version No

3.12.0 03/04/12 QE Version No

3.14.0 10/03/15 Updated for x64 support No

Acknowlegements

Frontpiece Design was produced by the chaoscope application.

IBM, the IBM Logo, Domino and Notes are registered trademarks of International Business Machines
Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All code and documentation presented is the property of Hadleigh Marshall (Netherlands) b.v. All
references to HMNL are references to Hadleigh Marshall (Netherlands) b.v.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 3 of 60

Contents
1. Introduction to DX Applications ... 6

2. Designing and Coding DX Applications .. 7

2.1 C++ Style .. 7

2.1.1 Function Boilerplate ... 7

2.2 C API versus C++ API... 7

2.3 ASCII versus UNICODE ... 8

2.4 32 Bit versus 64 Bit ... 8

2.5 Object Model Design ... 8

2.6 Standard DX Header Files .. 8

2.7 Project Directory Structure .. 8

2.8 Reference Platforms ... 9

3. A Single Threaded Command Processor ... 11

3.1 Task 1: Populate the RunSettings Object ... 11

3.2 Task 2: Initialising the Run Time ... 12

3.3 Logging ... 13

3.4 Task 3: Parse the ACL Rules XML document .. 14

3.5 Task 4: Create a DbACLMorpher ... 14

3.6 Task 5: Create a DominoExplorer ... 14

3.7 Task 6: Create a Request and Invoke the Explorer .. 15

3.8 Domino eXplorer Scope .. 16

3.9 Task 7: Clean Up and Terminate the Application ... 16

3.10 Active Code in the DbACLMorpher ... 17

3.11 Summary ... 18

4. The DX Threading Model .. 19

4.1 Introduction ... 19

4.2 The Request Lifecycle .. 19

4.3 The Request Owner .. 21

4.4 Request Priority ... 21

4.5 Constrained Multi Lane Scheduling .. 21

4.6 Error Detection, Localisation and Percolation ... 22

4.7 The Design of Runnable Classes ... 22

4.8 Thread Synchronisation .. 23

4.8.1 What Is It and Why Do We Need It? .. 23

4.8.2 Fix the Issue with a Lock ... 25

4.8.3 Implementing Locks ... 27

4.8.4 Alternatives to Heavyweight Locking ... 28

4.9 Request Sizing .. 31

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 4 of 60

5. A Multi-Threaded Server Add-In Task .. 32

5.1 Task 1: Populate the RunSettings Object ... 32

5.2 Task 2: Set the Thread Manager Policies ... 33

5.3 Task 3: Initialising the Run Time ... 34

5.4 Task 4: Construct the Processing Engines ... 35

5.4.1 The DbCopier Engine .. 35

5.4.2 The QCFeeder Engine ... 36

5.5 Task 5: Construct the Transaction Handler and Queue ... 36

5.6 Transaction Flow ... 37

5.7 Task 6: Construct the Application Command Handler .. 38

5.8 Task 7: Initiate Transaction Processing .. 38

5.9 Task 8: Monitor for Application Completion .. 39

5.10 Task 9: Terminate the Transaction Handler .. 39

5.11 Task 10: Clean up and Terminate the Application .. 40

5.12 Active Code in the Application Transaction Handler ... 40

5.12.1 MarshallTransaction Interface ... 40

5.12.2 SerializeTransaction Interface ... 42

5.12.3 MarkTransaction<status> Interfaces ... 43

5.13 Active Code in the QCopier ... 44

5.14 Active Code in the Application Command Handler ... 44

5.15 Summary ... 46

6. Debug Builds .. 47

6.1 Logging ... 47

6.2 The Debug Helper Class ... 47

6.2.1 Reporting on Memory Usage ... 47

6.2.2 Creating Memory Dumps ... 47

6.3 Memory Leak Detection .. 48

6.4 Instrumentation ... 49

6.5 Debugging Tools ... 49

6.5.1 DXTell .. 49

6.5.2 DXIPA .. 50

7. Building DX Applications ... 54

7.1 Reference Platforms ... 54

7.2 Notes API Installation .. 54

7.3 Project Directory Structure .. 54

7.4 Installing the DXCommon Kernel Sources ... 55

7.5 Installing the Application Sources ... 56

7.6 Build Settings .. 57

8. Deploying DX Applications ... 59

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 5 of 60

8.1 Deploying an Application Specific Database .. 59

8.1.1 Install the Database ... 59

9. Tuning DX Applications .. 60

9.1 Long Fat Pipes .. 60

9.2 Small Databases ... 60

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 6 of 60

1. Introduction to DX Applications
The Domino eXplorer (DX) was developed as a means for facilitating the rapid development of tools to be
used in projects that involve high volumes of data transformation. DX has been, and continues to be
developed for use across a wide range of Domino versions and platforms. The reference platforms are
Domino 9.0.x on Windows Server 2003 R2 (32 and 64 bit) and Red Hat Linux 6.6. DX is also used as a
research tool to investigate various aspects of Autonomic Systems, in particular Autonomic Throughput
Optimisation.

Standardised utilities have also been built around some of the functional DX classes, these are published
as “DX Tools” and can save time by providing off-the-shelf processing to be incorporated into complex
transformations that need high throughput rates.

DX is NOT a framework (we hate frameworks), instead it provides a grab bag of classes that can be
assembled in different designs to provide high throughput processing of Notes databases. There are
certainly some constraints imposed by the relationships between different objects and contracts imposed
by the API, these have been kept as minimal as possible.

This document provides an insight into how DX applications can be put together. The document is based
around a description of building two applications, the first is a single threaded applications intended to be
run from the command line that updates database ACLs. The second application is the Database Copier
tool (QCopy) that is a multi-threaded Server Add-In task. As the structure and design of these
applications is explored generic issues of DX application design, build, deployment and tuning are
discussed.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 7 of 60

2. Designing and Coding DX Applications
This section describes some of the guiding principles involved in designing and coding applications that
use the Domino eXplorer (DX).

However do remember ………

“Rules are for the guidance of wise men and obedience of fools.” Douglas Bader.

2.1 C++ Style

Workmanlike; a premium is put on portability, readability and maintainability rather than slickness. Coding
stays close to ANSI C with objects but this is not enforced as a rigid standard. Quality Engineering
reviews do sometimes eliminate some of the “uglier” coding constructs, however, when applying updates
to the code base the “if it isn’t broken then don’t fix it” dictate applies.

Historically the code base has evolved over a long period of time and on different platforms and so there
is some variability in coding styles evident in the implementation.

2.1.1 Function Boilerplate

The implementation of functions should adopt the following style rules.

Rule #1: All resources allocated or opened in a function, with the exception of those returned by the
function, should be freed or closed within the same function in which they were allocated or opened.

Rule #2: Resources that are required by multiple functions that are invoked sequentially should be
allocated or opened and freed or closed in a higher level function and passed as parameters.

Rule #3: Check the validity of passed parameters at the top of a function and exit immediately if any out-
of-envelope condition is detected.

Rule #4: Progressively allocate or open all resources needed within a function at the top of the function
(after parameter safety checks), any failure to acquire a resource should trigger the close or free of any
resources acquired up to the failure point and an immediate return to the invoking function.

Rule #5: Favour linear processing steps with early function exits in place of deep nesting in the
implementation of the mainline code of the function.

Rule #6: Implement polymorphic functions as mapping functions between each polymorphic form and a
common base function.

2.2 C API versus C++ API

The first reason that the Notes C API is used in preference to the Notes C++ API is largely historical, in
the “old” days the C++ API was a somewhat flaky implementation prone to leaks, exceptions and other
oddities and therefore the Notes C API was the only industrial strength option available.

There are two other reasons that continue to favour the use of the Notes C API over the C++ API. The
Notes C API offers additional capabilities over those exposed by the C++ API which would lead to the DX
implementation being a heterogeneous mix of both APIs. Use of the C++ API would impose a base
containment pattern that would influence the Object Model design of the DX Kernels and DX applications
in a way that would not be optimal for high throughput systems.

The DX implementation continues to use the Notes C API, the reference version of DX uses the R8.5
release of the API however applications have been built using levels back to the R5.0 API without
problems. The R8.5 DHANDLE is implemented by the DX headers if a release of the API is used that
does not implement it natively.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 8 of 60

2.3 ASCII versus UNICODE

For historical and cross-platform compatibility reasons the Domino eXplorer code used the ASCII coding
set. There is no fundamental reason at this time why the kernel and applications could not be migrated to
a UNICODE model however there a minimal benefits from this and therefore ASCII remains the de-facto
implementation standard.

2.4 32 Bit versus 64 Bit

For historical and cross-platform compatibility reasons the Domino eXplorer code uses a 32 Bit
implementation model. Again porting to a 64 Bit model would be possible however lack of demand and
relatively small benefits dictate that a 32 Bit implementation remains the reference model.

2.5 Object Model Design

The DX kernel implementation has been designed to support the development of sustainable high
throughput applications. Experience has shown that the most successful approach to the Object Model is
to follow the processing model rather than a more data oriented approach.

2.6 Standard DX Header Files

The following describe the contents of the standard generic include header files for DX, refer to the “DX
Class Catalogue” for object specific include header files.

 PlatBase.h – This header file includes C Run Time and OS specific headers needed by DX
applications certain cross-platform mapping macros are implemented in addition to debugging
definitions. This should be the first include file in any module.

 NotesBase.h – This header file includes the essential and the most commonly used Notes API
include files it also makes some cross version compatibility definitions. This header file should be
included after the PlatBase.h header.

 DXGlobals.h – This header files contains definitions used by application code and the DX kernel
code, it should be included after the NotesBase.h haeder.

2.7 Project Directory Structure

The default Domino eXplorer development environment follows the Visual Studio paradigm of a “Solution”
directory that contains multiple “Project” directories with a single application directory per application, this
paradigm is followed on both Windows and Linux development environments.

The standard DX header and code files are NOT designed to be added to the default include search
directories on either environment. The package expects to find a directory called “DXCommon” as a
project level directory in each solution directory that will be used to build DX applications, these should be
included in applications by relative re-direction. An include statement for the PlatBase.h header file that is
located in the “Platform” sub-directory of the DXCommon package would be coded as follows.

// Platform Includes

#include "../DXCommon/Platform/PlatBase.h" // Basic platform includes

Although a copy of the DXCommon package could be physically placed in each solution directory it would
be more usual to place the package in a shared location on the development workstation/server and then
create a symbolic link in each of the solution directories.

Windows:

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 9 of 60

The DXCommon kernel is supplied as a zipped archive (.zip). The contents of the archive should be
unpacked to either the <solution directory>\DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>\DXCommon directory.

As an example.

Unpack the DXCommon kernel into a directory “c:\usr\include\DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

mklink /D DXCommon “c:\usr\include\DXcommon-3.12.0”

Linux:

The DXCommon kernel is supplied as a gzipped archive (.tar.gz). The contents of the archive should be
unpacked to either the <solution directory>/DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>/DXCommon directory.

File ownership and access settings should be adjusted according to your local policies.

As an example.

Unpack the DXCommon kernel into a directory “/usr/include/DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

ln -s /usr/include/DXCommon-3.12.0 DXCommon

This deployment model allows different levels of the DXCommon package to be used in different
solutions without reconfiguring the development environment.

2.8 Reference Platforms

DXTools and the DXCommon kernel are portable across multiple platforms that support the Notes API.
However there are a limited set of reference environments on which they are regularly built and
regression tested.

Windows:

Build Environment:

Microsoft Visual Studio 2005/2008/2010/2011

Version 8.0.50727.867 (vsvista.050727-8600)

Running on any supported windows workstation.

Note: Backward compatibility tests are done with Visual Studio 2003 as that is the officially supported
development platform for the Notes API.

Notes API Version 9.0.

Execution Environment:

Windows Standard Server 2008 R2 (32 bit and 64 bit).

Domino Server 9.0.1 FP1.

Note: Execution environments from Domino 6.5.x through 9.0.x are regularly used.

Linux:

Build Environment:

Gcc Version: 4.1.2 for i386-redhat-linux.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 10 of 60

Running on Redhat Linux 6.6.

 Notes API Version 9.0

Execution Environment:

Redhat Linux 6.6

Domino Server 9.0.1 FP1.

Note: Execution environments from Domino 7.0.x through 9.0.x are regularly used.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 11 of 60

3. A Single Threaded Command Processor
This section examines the design and coding of a single threaded command processor that is intended to
run on workstations. The sample application that will be discussed in this section is the ACLMorph (ACL
Transformer) application.

ACL Transformer

This utility command processor will update the ACL of all datases within the

specified source so that they conform to the specification of the supplied

XML ACL Pattern.

USAGE:

ACLMorph ScopeServer ScopeDb ACLPatternURL [-V|-T[:Area]|-D[:Area]] [-E][-S][-N]

ScopeServer - The Server Name of the target | Domain | *

ScopeDb - The Database Name of the target | Directory | *

ACLPatternURL - The URL of the ACL Pattern XML document

[-V]|[-T[:Area]]|[-D:Area] - Set logging level to Verbose, Trace (optionally the area

to trace) or Debug.

-S - Optional - skips updating the ACL even if changes were made

-N - Optional - do not recurse into sub-directories

3.1 Task 1: Populate the RunSettings Object

The normal method of populating the RunSettings object is to extend the RunSettings class with a custom
(AppRunSettings) class that will derive application settings that may change from run to run and populate
those at the same time as populating the base RunSettings members. This processing is not compulsory
so long as this phase yields a correctly populated RunSettings object.

The command line arguments are passed to the constructor of the AppRunSettings class, the constructor
will set any default values and parse the command line arguments to populate members in the base and
extending class.

Some of the parameters define the configuration of the application, these would be set as default values
in the application code. The ACLMorph application is a standalone application and does not use a
repository database and does not keep an application log, all logging messages are output to the
console. The following default settings are made in the AppRunSettings class to specify this
configuration.

RunningAsAddin = FALSE; // Not Running as server Addin Task

NoRepository = TRUE; // Do not allow use of the repository

NoAppLog = TRUE; // Do not allow Application Event Logging

EchoLog = TRUE; // Force Echo to the console

CreateRepository = FALSE; // Do not Create the repository

Once the AppRunSettings object is created the mainline code should check two switches in the object to
determine if the application should proceed.

// Validate and build the Run Settings for this execution

arsLocal = new AppRunSettings(argc, argv);

if (!arsLocal->AllowExecution) // Exit silently if just showing usage

{

 return APPRC_NOERROR;

}

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 12 of 60

if (!arsLocal->IsValid) // Abort if validation failed

{

 std::cout << MSG_ACM0030S << std::endl;

 return APPRC_FATAL;

}

The AllowExecution flag is set to FALSE if the parameters were valid but indicated that the switches on
the command line (-?) indicated that the application usage messages should be shown and no execution
atrtempted. In this case the application just silently terminates, the console will show the application
usage messages.

The IsValid is set to FALSE if the application parameters were invalid or any other condition prevented
the valid instantiation of the AppRunSettings object. The application terminates with an error message
showing that the application could not be started.

Populating the RunSettings object is completed by setting the application name, short title and version in
the appropriate members.

// Set the identification in the Run Settings

strcpy_s(arsLocal->APPName, MAXAPPNAME, APP_NAME);

strcpy_s(arsLocal->APPTitle, MAXAPPTITLE, APP_TITLE);

strcpy_s(arsLocal->APPVer, MAXAPPVERSION, APP_VERSION);

The APP_NAME, APP_TITLE and APP_VERSION symbolic values are defined in the application header
file.

It should be noted that there is not a permanent application log available at this stage of processing, even
if the application intended to use one so all output is directed to STDOUT.

Although this application has been designed to execute from a command line on a user workstation there
is nothing to prevent it from being run on a server using a “Load” command from the local or remote
server console or from a program document.

3.2 Task 2: Initialising the Run Time

The AppRunSettings object is passed to the constructor of the single threaded run time
(ExecEnvironment).

Initialising the Run Time will accomplish the following tasks.

 Initialise the Notes Runtime

 If the application is using a repository database this will be opened and the DBHANDLE made
available

 Logging will be initialised and directed to the appropriate destination(s)

 A default elapsed timer will be initialised

In the case of the ACLMorph application there is no repository used and the only destination for logging is
the command line console.

After creating the run time object applications should test the IsInitialised member to make sure that the
run time was properly initialised as indicated by a value of TRUE for the member.

// Initialise the runtime environment

xeLocal = new ExecEnvironment(arsLocal, argc, argv);

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 13 of 60

if (!xeLocal->IsInitialised) // Abort if runtime failed to initialise

{

 std::cout << MSG_ACM0030S << std::endl;

 delete arsLocal;

 return APPRC_FATAL;

}

Assuming that the run time initialised successfully then from this point on in the applications the logging
interface can be used and Notes API calls can be made. If a repository is used by the application then the
database would be open and available for use from this point.

Once initialised the ACLMorph application reports on the build version of the run time engine.

// Report the Engine Build Information

xeLocal->GetBuildInfo_s(szBuildID, MAX_BUILD);

sprintf_s(szMsg, MAX_MSG, MSG_ACM0032I, szBuildID);

xeLocal->LogVerbose(szMsg);

The message will only be reported to the console if the application is running in Verbose, Trace or Debug
logging levels. The output sent to the console is as follows.

ACM0032I: Using Runtime Version: DXCommon ST Runtime 3.12.0 (build: 105).

3.3 Logging

If a permanent logging destination is specified for the application then this can either be (default) the
database that is specified as the repository database or the current log.nsf workstation or server Notes
Log. Logging messages may be echoed to a command line console or a Domino server console.

Logging messages are written in the same form as the standard logging performed by Notes log
messages are written to a series of “Events” documents that will display in the “Miscellaneous Events”
view in a standard log or an equivalent view in a repository database. When designing a repository
database the views and form for displaying these logging messages can be copied from a standard Note
Log template.

The logging functions in the kernel generate a value for the “Server” item in the “Events” documents in the
form “<app title>(<Server or User Common Name>)”, this creates a unique category in the Miscellaneous
Events view for each instance of a DX application.

Messages that are generated and logged by the kernel, functional DX objects and the standard DX tools
are always prefixed by a message ID. The message ID consists of 3 alpha characters identifying the
source of the message e.g. “ACM” for the ACLMorph application layer. This is followed by four numeric
characters that uniquely identify the message and finally a single alphabetic character that identifies the
severity level of the message with the following meanings.

 T – A Trace message

 I – An Informational message

 W – A Warning message

 E – An Error message

 S – A Severe Error message

The convention of prefixing all logged messages with an identifier makes it easier to locate specific
events in log files and easier to locate specific areas of code in an application where messages are being
generated.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 14 of 60

3.4 Task 3: Parse the ACL Rules XML document

The application constructs an ACLRuleSetParser object and then uses this object into an ACLRuleSet
object.

// Create the parser

rsParser = new DXACLRuleSetParser(xeLocal, 0);

// Parse the ACL rule set

rsRules = rsParser->parseTheseRules(arsLocal->szACLRuleSet, 0);

If the XML document contains a valid definition for an ACLRuleSet than a pointer to the object is returned,
if an object cannot be created then the parser returns NULL.

If the logging mode of the application is Verbose (or higher) then messages are issued by the parsing
process.

DXR7004I: Loading resource source

'http://betamax.lan/DCF/Depot.nsf/Payloads/ACL.T01/$File/ACL-T01.xml' of type 3.

DXR7009I: Resource source

'http://betamax.lan/DCF/Depot.nsf/Payloads/ACL.T01/$File/ACL-T01.xml' has been loaded,

Length = 304 bytes.

DXR7108I: XML: <?xml version='1.0' encoding='utf-8'?>.

DXR7108I: XML: <!-- Add a generic server entry -->.

DXR7108I: XML: <ACLRuleSet>.

DXR7108I: XML: <CompulsoryEntries>.

DXR7108I: XML: <ACLRule Name="*/SERVER/ACME" Type=ServerGroup Level=Manager>.

DXR7108I: XML: <Option Type=NoDeleteDocs Set=Off/>.

DXR7108I: XML: <Role Name=* Assign=Yes/>.

DXR7108I: XML: </ACLRule>.

DXR7108I: XML: </CompulsoryEntries>.

DXR7108I: XML: </ACLRuleSet>.

DXR7130I: The rule set has been loaded from

'http://betamax.lan/DCF/Depot.nsf/Payloads/ACL.T01/$File/ACL-T01.xml'.

3.5 Task 4: Create a DbACLMorpher

The DbACLMorpher class is an application defined class that extends the DXReporter class, the
DXReporter allows application code to be invoked for, most commonly, every database that is identified in
the scope of a search performed by the Domino eXplorer. This is the mechanism that allows application
code to be executed for a single database or for an arbitrary collection of databases.

// Construct a new DbACLMorpher and condition it for execution with this rule set

amLocal = new DbACLMorpher(xeLocal);

amLocal->acsCurrent = rsRules; // Bind to the current rule set

if (arsLocal->bSkipUpdates) amLocal->SkipUpdates = TRUE; // Set Skip updates

Once constructed the DbACLMorpher is conditioned with the ACL Rule Set created in the previous step
as well as setting a control flag that was derived from the command line, the flag indicates to the
processing that any changes made to ACLs are not to be saved.

3.6 Task 5: Create a DominoExplorer

The DominoExplorer class provides the central engine that permits application code to be exercised
against every database in an arbitrary collection. Using the Domino eXplorer cuts down considerably on

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 15 of 60

the amount of custom application code that needs to be provided to action transformations on potentially
large sets of databases.

// Now construct a Domino Explorer to drive the whole process

dxLocal = new DominoExplorer(xeLocal, 0);

Once the object is constructed the application should test the IsStarted member for TRUE to ensure that
the object has been correctly initialised.

3.7 Task 6: Create a Request and Invoke the Explorer

The application next creates a DXRequest object that describes the scope of the collection of databases
that is to be processed.

// Construct an explorer request from the run settings

dxrTop = new DXRequest();

dxrTop->RecurseDirectories = arsLocal->bNoRecursion;

// Set the Database ACL Morpher in the request

dxrTop->ScannersNeeded = SCANNER_DATABASE; // Exit is for the D/B Level

dxrTop->Reporters = DXREP_DATABASE; // Reporter is for D/B Exits

dxrTop->dxrDatabase = amLocal; // Set the object address

// Attempt to parse the request scope - if valid then execute the request

if (dxrTop->ParseRequest(xeLocal, arsLocal->szRQScope1, arsLocal->szRQScope2))

The last step in the code shown above parses the two parameters supplied on the command line into a
scope that identifies the collection of databases that are to be processed, the parse process returns
TRUE if the scope could be determined from the passed parameters. If the parser returns FALSE then an
explorer search should not be attempted with the supplied settings.

Once the request has been successfully created it is passed to the explorer to execute.

// Pass the request to the Domino Explorer to process

if (!dxLocal->ProcessRequest(dxrTop, 0))

The call to ProcessRequest will return TRUE if the request was executed successfully and FALSE if the
request failed or was only partially completed.

The log messages shown below show the messages issued by the explorer when running in verbose (or
higher) logging mode. The example below is shown for a scan which has a scope of a single database
alone.

DXR0015I: Database/Directory 'CN=Betamax/OU=SERVER/O=ACME!!ACL\TDB01.nsf' has been successfully
opened.
DXR0074I: Remote open on server 'Betamax/SERVER/ACME' R8.5.2 FP:0 HF:0 Build:379 took 4509 ms
(Latency: 0 = 30 + -30 ms.).
DXR1404I: Starting scan of database 'TDB01.nsf' in 'ACL'.
DXR1405I: Completed scan of database 'TDB01.nsf' in 'ACL'.
DXR1013I: The current request was processed successfully.
DXR1023I: 0 Servers were processed and 0 were dropped for this request.
DXR1024I: 0 Directories were processed and 0 were dropped for this request.
DXR1025I: 1 Databases were processed and 0 were dropped for this request.

The DXR0074I message in the logging above is the standard message shown by the kernel whenever a
database is successfully opened. It shows where the database was opened, what version of
Notes/Domino it is being served by, how long the open process took in milliseconds and the network
latency of the connection over which it was opened.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 16 of 60

3.8 Domino eXplorer Scope

The scope for a Domino eXplorer scan is specified by providing two null terminated character strings. The
first of the strings specifies the server scope the second specifies the database scope. In addition a
BOOL switch value is supplied indicating if scans can recurse into sub-directories.

The server scope can specify any of the following values.

 The abbreviated name of a server – only that server will be scanned.

 An empty string or the value “Local” - only the server or workstation on which the application is
running will be scanned.

 @<domain name> - all servers that can be found that are in the specified Domino Domain will be
scanned.

 @<domain name pattern> - the pattern can contain the “*” and/or “?” wildcard characters, any
servers that can be found where the domain name matches the supplied will be scanned.

 An abbreviated server name pattern - the pattern can contain the “*” and/or “?” wildcard
characters, any servers that can be found where the server abbreviated name matches the
supplied pattern will be scanned.

 * - all servers that can be found will be scanned.

The database scope can specify any of the following.

 The path of a Notes database relative to the Notes Data Directory – this database will be
scanned on all servers within the server scope.

 The name of a directory relative to the Notes Data Directory – all databases in the specified
directory will be scanned on all servers within the server scope. All databases in sub-directories
will also be scanned ONLY if the recursion control switch is set to TRUE.

 * - all databases on all servers within the server scope will be scanned.

 The path of a Notes database relative to the Notes Data Directory containing the “*” and/or “?”
wildcard characters – any database matching the pattern on all servers within the server scope
will be scanned.

 The name of s directory relative to the Notes Data Directory containing the “*” and/or “?” wildcard
characters – any directories that match the pattern on all servers within the server scope will be
scanned, including all sub-directories ONLY if the recursion control switch is set to TRUE.

In normal usage the server scope is supplied as a server name, unqualified or partially qualified
specification for the server scope can cause very large quantities of processing. If the server scope is not
fully qualified then scanning begins with the current or home server and every server visited is checked to
see if it has server documents that identify servers that match the scope.

3.9 Task 7: Clean Up and Terminate the Application

Once the processing has been completed the application code should destroy the objects that have been
created and then terminate the application. The run time and the associated RunSettings should be the
last objects that are disposed of, this ensures that the logging interface is available for messages
generated during the termination process.

// Clean up the processing object

if (dxrTop != NULL) delete dxrTop; // Explorer Request

if (dxLocal != NULL) delete dxLocal; // Explorer

if (amLocal != NULL) delete amLocal; // DbACLMorpher

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 17 of 60

if (rsRules != NULL) delete rsRules; // ACL Rule Set

delete rsParser; // ACL Rule Set Parser

// Processing is completed - shut down, clean up and exit.

if (!xeLocal->Close())

{

 std::cout << MSG_ACM0031S << std::endl;

 return APPRC_FATAL;

}

// Cleanup the local objects

delete xeLocal; // Run Time

delete arsLocal; // RunSettings

// Terminate the application

return APPRC_NOERROR;

3.10 Active Code in the DbACLMorpher

In this application the active custom code is contained in the ReportOnThisDatabase interface in the
DbACLMorpher class. The code is not large or complex mostly relying on code paths that are available in
the DX functional objects being used. The ReportOnThisDatabase interface is invoked passing a handle
to the database that is to be processed, the code firstly reads the ACL from the database.

// Read the ACL of the current database

stAPIRC = NSFDbReadACL(hdbEntity, &hACL);

The call is a native Notes API call, so the returned status must be checked and any appropriate error
processing performed if the status indicates a problem.

if (ERR(stAPIRC) != NOERROR)

{

 sprintf_s(szMsg, MAX_MSG, MSG_ACM0134E, dxrRQ->szDirectory, dxrRQ->szDatabase,

dxrRQ->szServer);

 xeLocal->LogMessage(szMsg, iThreadID);

 xeLocal->GetAPIMessage(stAPIRC, szMsg);

 xeLocal->LogMessage(szMsg, iThreadID);

}

In the case of a problem being indicated from the call to read the ACL, messages are issued and no
further processing is attempted on this database ACL. The code above shows the use of the
GetAPIMessage call in the kernel to obtain a formatted description of the error code.

The next step in the application code is to create a clone of the ACL Rule Set that is to be applied on this
database. The step is not strictly necessary in this application context but is there for compatibility with
use in multi-threaded applications. The DXACLRuleSet contains stateful information that is used in the
execution of a request and therefore calls into the DXACLRuleSet are not re-entrant, hence the need to
clone the object for use on each database.

// Create a local clone of the Rule Set

arsClone = new DXACLRuleSet(xeLocal, iThreadID);

acsCurrent->clone(arsClone, iThreadID);

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 18 of 60

The cloned instance of the ACL Rule Set is then used to process against the database ACL and coerce
changes to the ACL so that it conforms to the specification in the XML document provided to the
application.

// Coerce the ACL to conform to the Rule Set

if (arsClone->coerce(hACL, iThreadID))

The call to coerce will return a BOOL with value TRUE if the ACL has been updated by this action, the
changes are only made to the in-memory ACL and the application needs to save the ACL back to the
database if these changes are to be made permanent.

// Update the ACL - unless skipping

if (!SkipUpdates)

{

 // Save the updated ACL

 stAPIRC = NSFDbStoreACL(hdbEntity, hACL, 0L, 0);

….

}

The return status from the Notes API call needs to be checked as usual.

All that remains now is to clean up and exit from the ReportOnThisDatabase interface.

delete arsClone;

// Free the memory associated with the ACL

OSMemFree(hACL);

dxrRQ->ReturnCode = RETURN_NOERROR;

return TRUE;

A sample of the logging generated by the coerce processing running with a logging level of verbose or
higher is shown below.

DXR7239I: ACL entry '*/SERVER/ACME' has been added.

DXR7240I: The ACL has had 1 updates applied and should be saved.

ACM0133I: The ACL has been updated in 'ACL\TDB01.nsf' on 'Betamax/SERVER/ACME'.

3.11 Summary

In the sample application a small amount of custom code is used to “stitch” together different DX
elements to deliver a powerful application. The generic design pattern that is exposed can be used to mix
DX elements and custom processing in an identical manner.

Build custom processing into an “engine” style class that is capable of performing the processing on a
single database. Then construct a class that extends the DXReporter class and use the
ReportOnThisDatabase interface to invoke the custom processing for each database that is passed to the
interface.

The mainline code would follow the same pattern as the sample application, it largely consists of
constructing the necessary objects initialising them as needed and then invoking the Domino eXplorer to
drive the process against all databases within the scope for the current invocation of the application.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 19 of 60

4. The DX Threading Model
This section of the document presents the key aspects of the threading model that a developer using the
API should be familiar with and is presented here before looking at the implementation of a multi-threaded
application in the next chapter.

4.1 Introduction

The DX threading model has been designed to present application developers with a simple architecture
that is easy to design for and an API that is simple to use. The application interface is based on a
message passing interface (MPI). Applications create request objects that describe some work that must
be performed asynchronously and post these request to the kernel for execution. The kernel manages a
pool of threads, the threads in the pool are homogeneous and can execute any request. The kernel will
dispatch requests for execution by one of the worker threads in the thread pool. Once a request has
completed the state change can be detected in the application code by a polling mechanism that is
invoked through the API.

4.2 The Request Lifecycle

Application Code

Runnable Object

API

API

Ready Pool

Rejoin Pool

Worker
Threads

1 2

3

4

5

6
7

8

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 20 of 60

The application creates a request object and populates with the information needed to execute a chunk of
work. The application the calls the “PostARequest” function in the run time API, passing the address of
the request object and the address of the “Runnable” object that is to execute the request.

The run time API takes the information passed by the application code in the “PostARequest” call and
stores it in the “Ready Pool” where it is available to be executed.

The kernel code monitors the pool of worker threads and as soon as one is available to run work it will
locate the most appropriate request that is waiting in the “Ready Pool” and will dispatch it to the available
worker thread for execution.

The worker thread will invoke the “ExecuteThisRequest” interface on the Runnable object to have the
application code service the request. The application code will indicate the success or otherwise and
return any needed information in the request object that was passed to it.

When processing or the request is completed the application code returns to the Worker Thread.

The Worker Thread stores the information in the “Rejoin Pool” and signals the kernel that it is available for
processing work again.

The application code calls the “GetRejoinRequest” function in the run time API to poll the “Rejoin Pool” to
see if request have completed processing.

If a request has been completed then the API will return the address of the completed request object. The
application code then processes any returned information and disposes of the returned request object.

1

2

3

4

5

6

7

8

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 21 of 60

4.3 The Request Owner

Calls to the “PostARequest” and “GetRejoinRequest” functions in the run time API take a parameter of
“Request Owner” this parameter is an arbitrary address encoded as a void pointer (void *). This
parameter provides a mechanism for grouping bunch of requests together and localising the code that will
process these grouped requests.

The kind of processing that the DX kernel was designed for often break down into a hierarchic pattern for
parallel execution, one request will generate a number of sub-requests and each sub-request will, in turn,
create a number of sub-sub-requests and so on. The owner mechanism can be used here to reflect the
hierarchic workload, in this case the Owner for each request is set to the address of the parent request in
the hierarchy. When polling for completed requests using the “GetRejoinRequest” the address of a parent
request is specified as the owner and the return will signal when every sub-request that belongs to that
parent has completed and therefore the parent processing can be completed.

4.4 Request Priority

Calls to the “PostARequest” functions in the run time accept a parameter that specifies the “Priority” of the
request. The priority is specified as an arbitrary integer value with larger numbers being a higher (more
urgent) priority. The priority is used by the kernel to determine which of the requests available in the
“Ready Pool” will be the next to be dispatched to an available thread.

As a general rule workloads that follow the hierarchic model described in the section above should post
requests at higher priorities the lower they are in the hierarchy.

The kernel also implements an optional, request priority ageing mechanism. When ageing is in effect then
requests that reside in the “Ready Pool” have their priority increased at regular intervals. This mechanism
is intended to prevent requests becoming stale while waiting to be executed and tying up resources while
not contributing to throughput rates.

4.5 Constrained Multi Lane Scheduling

As pointed out in the earlier sections the kernel treats all worker threads as equals, any request can be
dispatched to any worker thread that is available to process work. When a single request is being
processed by a worker thread all processing for that request must be completed before the thread
becomes available to process other requests, including the execution and rejoin processing of any sub-
requests that are posted. There is a fundamental exposure from this model, it is possible for all threads to
fill up with “higher level” requests leaving no worker threads available to execute the lower level requests
that have been posted. In this scenario processing will simply grind to a halt with all worker threads
waiting for sub-requests to complete, which they never will, or waiting for space to become available in
the “Ready Pool” so that more sub-requests can be posted.

The kernel solves this thread exhaustion problem by providing a different scheduling mode “Constrained
Multi Lane Scheduling” (CMLS). The CMLS mode is selected by setting the TPOOL_MODE_CMLS bit in
the TPSchedMode member of the ThreadMnagerPolicy object that is used to configure the multi-
threading kernel.

When running in CMLS mode the kernel still regards all worker threads as being equal and able to
execute any request however it limits (constrains) the number of threads that can be concurrently
executing requests from different levels in the workload hierarchy. CMLS identifies four arbitrary levels of
request hierarchy. Level or Lane 0 defines service requests these requests would normally be running for
the duration of the application. Level or Lane 1 defines requests that will themselves generate any
number of what the application would recognise as unit transactions, these are referred to as feeder
transactions. Level or Lane 2 defines unit transactions and Level or Lane 3 defines sub-requests or
requests that will perform the work of a part of a transaction. The Level or Lane for an individual request
is identified to the kernel by setting the appropriate bits in the Attributes flag that is passed in the call to
“PostARequest”.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 22 of 60

Constraints may be applied as a percentage of the threads in the thread pool that can be executing
requests from levels 0, 1 and 2. These constraints are applied by setting the appropriate members in the
ThreadManagerPolicy that used to initialise the kernel. The constraints not only apply to the worker
threads but also to the number of requests in that level that can be in the “Ready Pool” at any point in
time. The protocols for the CMLS implementation allow a worker thread or a “Ready Pool” entry to be
used from the requests level or from a resource that is available from any higher level.

 Supposing that there is an application that will execute with 10 worker threads in the thread pool and 100
entries in the “Ready Pool”, the application has configured the CMLS limits as Lane 0 is set to 0% (i.e. we
will not be executing any of these requests, Lane 1 is set to 20% and Lane 2 is also set to 20%. In this
example there could be a maximum of 20 Lane 1 requests in the ready queue at any point in time and
there could be a maximum of 2 Lane 1 requests executing concurrently. There could also be a maximum
of 40 Lane 2 requests in the “Ready Pool” at any point in time, assuming that there were no Lane 1
requests in the pool at that time and there could be a maximum of 4 Lane 2 requests executing
concurrently, also assuming that no Lane 1 requests were executing at that time. Lane 3 requests are
always unconstrained and can occupy all of the available slots in the “Ready Pool” and can be
concurrently executing requests in every thread in the thread pool.

It should be noted that the priority mechanisms described in the previous section remain in effect when
the CMLS scheduling mode is engaged.

The original analogy used in the design of the CMLS facility was to view the worker threads as separate
lanes on a motorway and to view the different Levels as vehicle types with 0 being large articulated
lorries, 1 being lorries, 2 being vans and 3 being cars and motorbikes. Signals above the motorway
restrict vehicle types to only using assigned lanes. When entering the motorway, if the assigned lanes for
your vehicle type are full then you have to wait. The analogy can still be useful but does introduce some
false assumptions about how CMLS works. The main failing is that threads are not assigned to handle
particular CMLS levels, individual threads can be used for any request but CMLS will prevent the total
current work profile from exceeding any of the prescribed constraints.

4.6 Error Detection, Localisation and Percolation

Error handling in mullti-threaded applications can be complex if not clearly thought through in the
application design. While not prescriptive the following pattern is suggested for applications that are
implementing the Domino eXplorer multi-threaded kernel and functional objects.

Top-Level requests are issued a “permit to execute” this is normally implemented as a BOOL and carried
in the top-level request object. Sub-requests all carry the address of the top-level request, before starting
the execution of any sub-request or issuing a new sub-request the “permit to execute” is checked and if
the permit has been revoked then a sub-request is not executed but is marked as failed, new requests
are not dispatched and the object destroyed.

While processing a sub-request any error or out-of-envelope condition should be detected and reported
as soon as possible. The processing of the sub-request must determine if it will fix the error or tolerate the
error in which case it continues to process. If the processing of the sub-request determines that it is
unable to recover or tolerate an error then it should revoke the permit to execute in the top level request
by setting it to FALSE.

All processing paths that have issued sub-requests should recover them from the rejoin pool, even if the
permit to execute has been revoked and marking the parent request as having failed. This paradigm will
result in the percolation of the error, eventually to the top-level request.

4.7 The Design of Runnable Classes

Although there are no real constraints imposed by the kernel for the design of Runnable objects apart
from the fact that they need to inherit from the “Runnable” class and implement the “ExecuteThisRequest”

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 23 of 60

interface, there are a few simple guidelines that should be followed to ensure a successful
implementation pattern.

There should never be a need to instantiate more than a single instance of any runnable class, no matter
how many threads are being run in the thread pool. Some developers assume that there is some kind of
affinity between the Runnable object and a particular thread in the pool, this is not the case there is no
such affinity.

Any variable data used in processing a request should only be held in either local automatic storage or in
“Transaction Storage” i.e. members in the request object. These variables should NEVER be stored in
members in the Runnable object. The selection of Automatic or Transaction storage is determined by the
lifecycle of the data in the variable. If the data is to be used across multiple asynchronous request
dispatches then the variable should be stored in Transaction storage, if the data is only to be used for the
processing of a single request then it is probably more appropriate to use Automatic storage.

The kernel does not have any provision for “Thread Local Storage” i.e. memory that is reserved for use by
a single thread. The kernel does however provide API functions for using one resource, database
handles, on a per thread basis. All other Domino resources can be used from multiple threads, compiled
formulas can only be used by one thread at a time but are more appropriately handled in Transaction
storage rather than dedicated to a particular thread or by serialising access to the compiled formula.

4.8 Thread Synchronisation

This section examines a number of aspects of Thread Synchronisation, specifically how they apply to DX
applications and the DX kernel.

4.8.1 What Is It and Why Do We Need It?

Thread Synchronisation is the implementation and use of mechanisms in an application that permit safe
serial access to resources in a multi-threaded application. Failure to serialise access to some application
resources, usually data structures, can result in a failure mode referred to as a “Data Race” or “Race
Condition” in this failure mode lack of data coherence between the code in different threads of an
application results in an indeterminate state of the application.

The following pseudo-code example will illustrate a “Race Condition” and the resulting coherence failure
in part of an application.

The area of the application that we will examine is designed to create a forward linked list of objects
(“Things”), the analysis will look at the execution of this process by two threads. In the example code the
HeadOfList variable (Thing *) is a globally addressable variable that is initialised to NULL and the “Thing”
class implements a member called “NextThing” that is the foward pointer that forms the linked list also
initialised to NULL on creation of an instance of the class, all other variables can be assumed to be local
automatic variables within the scope of the code being examined.

The Code.

MyThing = new Thing(); // Create a new Thing object

// Maintain the linked list

// Determine if the head of the list has already been allocated

If (HeadOfList == NULL) HeadOfList = MyThing; // Add the object as the head of

the list

Else

{

 // Locate the last object on the chain

 ExistingThing = HeadOfList;

 While (ExistingThing->NextThing != NULL) ExistingThing = ExistingThing-

>NextThing;

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 24 of 60

 // Add the new object to the end of the chain

 ExistingThing->NextThing = MyThing;

}

We will now look at two instances of execution by two threads (RED and BLUE) each one will add two
objects to the linked list, in the first instance the execution is successful and in the second the execution
fails due to a race condition.

An Example: Successful Execution

MyThing = new Thing(); // #1

If (HeadOfList == NULL) // true

HeadOfList = MyThing;

MyThing = new Thing(); // #2

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

MyThing = new Thing(); // #3

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

MyThing = new Thing(); // #4

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

The linked list has been correctly formed as shown below.

HeadOfList -> #1 -> #2 -> #3 -> #4 -> NULL

An Example: Failure – Race Condition

MyThing = new Thing(); // #1

If (HeadOfList == NULL) // true

HeadOfList = MyThing;

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 25 of 60

MyThing = new Thing(); // #2

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

MyThing = new Thing(); // #3

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

MyThing = new Thing(); // #4

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

ExistingThing->NextThing = MyThing;

The linked list is now incorrectly formed as shown below.

HeadOfList -> #1 -> #2 -> #3 -> NULL

The #4 object is now orphaned, also to make matters worse in this case there is nothing obviously wrong

with the execution, the error would not be detectable unless we checked for memory leaks at program
termination or there were other checks and balances that would surface the problem then it could go
unnoticed and simply result in incorrect output. The example above only illustrates a single failure mode
that results from a race condition, there are many other modes that can have mire catastrophic results
such as use-after-free, loops, data overwrites and many more.

4.8.2 Fix the Issue with a Lock

One approach to fixing the issue is to introduce a lock (semaphore, mutex, critical section) this
mechanism introduces a state of the vulnerable data “locked” where it can only be accessed by the
thread that currently “owns” the lock. This would then provide the means for us to serialise access to the
forward chain of the linked list and through that enforce coherence of the data. For the moment we will
treat the “lock” as an opaque mechanism, we will look at the implementation later.

We introduce two new constructs to the code a LockTheList() and UnlockTheList() call, the first asserts
ownership of the linked list and blocks until the lock can be asserted the second releases ownership of
the lock.

The Code.

MyThing = new Thing(); // Create a new Thing object

// Maintain the linked list

// Acquire The Lock

LockTheList();

// Determine if the head of the list has already been allocated

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 26 of 60

If (HeadOfList == NULL) HeadOfList = MyThing; // Add the object as the head of

the list

Else

{

 // Locate the last object on the chain

 ExistingThing = HeadOfList;

 While (ExistingThing->NextThing != NULL) ExistingThing = ExistingThing-

>NextThing;

 // Add the new object to the end of the chain

 ExistingThing->NextThing = MyThing;

}

// Release The Lock

UnlockTheList();

We now look at the failing execution sequence again with the additional code in place. The code change
that we have introduced here is a coarse-grained lock that is a lock that ensures safety of the resource it
is protecting with a wide ranging safety net that has a quite high risk of contention. There are other more
fine-grained implementations that would involve some code changes that would reduce the contention.

An Example: Success – Race Condition is Avoided

MyThing = new Thing(); // #1

LockTheList(); // Locked

If (HeadOfList == NULL) // true

HeadOfList = MyThing;

UnlockTheList(); // Unlocked

MyThing = new Thing(); // #2

LockTheList(); // Locked

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

UnlockTheList(); // Unlocked

MyThing = new Thing(); // #3

LockTheList(); // Locked

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

MyThing = new Thing(); // #4

LockTheList(); // List is still locked – wait for it

ExistingThing->NextThing = MyThing;

UnlockTheList(); // Unlocked

LockTheList(); // Locked

If (HeadOfList == NULL) // false

ExistingThing = HeadOfList;

While (ExistingThing->NextThing != NULL)

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 27 of 60

ExistingThing = ExistingThing->NextThing;

While (ExistingThing->NextThing != NULL)

ExistingThing->NextThing = MyThing;

UnlockTheList(); // Unlocked

The linked list has been correctly formed as shown below.

HeadOfList -> #1 -> #2 -> #3 -> #4 -> NULL

4.8.3 Implementing Locks

We will now look at the implementation of the locking mechanism that we introduced to fix the race
condition in our code example.

The first implementation to be considered is a lightweight implementation that uses a shared memory
variable to communicate the lock state between the different threads.

Locking Code.

Volatile BOOL ListLock; // Shared memory Lock Variable

.

.
void LockTheList()

{

While(ListLock == TRUE) Wait; // Wait for the lock to become free

ListLock = TRUE;

Return;

}

Void UnlockTheList()

{

ListLock = FALSE;

Return;

}

The code above raises a few important question, first of all what is that volatile keyword doing on the
declaration of the shared memory lock variable? The volatile keyword tells the compiler to always read
the value of the variable from memory and never cache it’s value or an intermediate value that depends
on the variable in registers. This is not an option that defeats optimisation it modifies the core “register
assignment” function in the compiler for all references to any variable that is defined with the keyword.

The second question is what does this “Wait” thing do? There are two types of locks that can be
implemented they differ in their implementation of the “Wait” process. The first type are Spin locks, this
type of lock does nothing for the “Wait” it merely loops back to check the value of the lock again, hence it
just keeps spinning the CPU. Spin locks are designed to be used in situations that experience very short
state transitions such as within the operating system or in real-time systems. The alternative
implementation pattern to the Spin lock is the Yield lock. The Yield lock implements a mechanism for
suspending the operation of the thread at the point where “Wait” is needed and allows the operating
system to immediately start executing a different thread.

The more eagle-eyed reader will have already noticed a rather more important question, do we not have
the same possibility of a race condition in the code that asserts the lock? Indeed we do, the following
execution map will show the race with two threads (RED and BLUE).

ListLock = FALSE; // Initial State is unlocked

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 28 of 60

While(ListLock == TRUE)

While(ListLock == TRUE)

ListLock = TRUE;

Return;

ListLock = TRUE;

Return;

Both threads now continue executing in the belief that they hold the lock exclusively which is not the
contract that we have relied on to make the linked list processing safe and we are back to having the
potential for the same race condition that we identified initially.

The core of the problem is that the test of the ListLock variable (while(ListLock == TRUE)) that
determines that the variable is in a suitable state for it to be changed (i.e. FALSE) and the following
instruction setting it to be TRUE (ListLock = TRUE) are not “atomic” the execution of the instructions can
be interrupted between the test and the set instruction which opens up the possibility of a race condition.
The examples here illustrate the problem at the level of “C” code, the problem becomes much more of an
issue when we look at the level of the machine instructions that the compiler generates and we throw into
the mix multi-processors and multicore processors and CPU architectures that allow out-of-order
execution of instructions along with memory caching. Modern CPUs provide primitive operations at the
hardware level that allow the correct implementation of true “atomic” operations that include the “Test and
Set” primitive used in our flawed example. Developers would not normally introduce code that directly
implement these hardware methods to achieve true atomicity instead they would rely on higher level
functions provided by the language, third-party libraries or the operating system to implement
heavyweight locks and counters etc. These heavyweight implementations will themselves use lower level
functions that eventually rely on using the hardware methods to achieve correct atomic operations.

So we could fix our flawed example by for instance, on the Windows platform creation of an OS Mutex
(CreateMutex) to use as the lock and then using the OS provided assertion (WaitForSingleObject) and
release (ReleaseMutex) functions to enforce the correct contract for the lock mechanism suggested in the
example. However, there is no such thing as a free lunch, the use of these heavyweight synchronisation
mechanisms have a cost. Even at the hardware layer there are several Intel papers that indicate that the
penalties of using the mechanisms can have significant impacts on system performance and behaviour,
and suggesting that where appropriate lightweight alternatives can be correctly implemented then those
are preferred. Indeed use of the heavyweight locking mechanisms may display multiple wait states and
side effects that can give rise to “emergent behaviours” that make it extremely difficult to tune and
optimise some multi-threaded applications.

4.8.4 Alternatives to Heavyweight Locking

In this section we will examine some alternatives to using heavyweight locking mechanisms to achieve
thread synchronisation.

4.8.4.1 Option #1: Avoid Synchronisation

The very best option is to design your application so that it is race free i.e. does not require the use of any
of the synchronisation mechanisms that are vulnerable to race conditions. We will examine one such
example implementation for our flawed example.

We change the structure of our application so that there is an additional thread (PURPLE) that is
responsible for the maintenance of the linked list, the RED and BLUE threads remain responsible for the
creation of Things that will be assembled into the forward linked list. The only thing that we have to be
careful about is to make sure that the mechanism that we implement to communicate the availability of a
new Thing to be added to the list is not vulnerable to race conditions.

New Code Example.

#define RED 0

#define BLUE 1

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 29 of 60

Thing * HeadOfList = NULL; // Head of the linked List

Volatile Thing * NewThings[2] = {NULL, NULL}; // Per Thread Array of new Things

MyThing = new Thing(); // Create a new Thing object

// Post the new object to the list maintainer thread

While(NewThings[RED or BLUE} != NULL) Wait; // Wait for available to post

NewThings[MyThread} = MyThing; // Post the request

Loop; // Process all Things

// List Maintenance
If (NewThing[0] != NULL)

{

NextThing = NewThing[RED];

NewThing[RED] = NULL;
}

Else

{

NextThing = NewThing[BLUE];

NewThing[BLUE] = NULL;
}

// Maintain the linked list

// Determine if the head of the list has already been allocated

If (HeadOfList == NULL) HeadOfList = NextThing; // Add the object as the head of

the list

Else

{

 // Locate the last object on the chain

 ExistingThing = HeadOfList;

 While (ExistingThing->NextThing != NULL) ExistingThing = ExistingThing-

>NextThing;

 // Add the new object to the end of the chain

 ExistingThing->NextThing = NextThing;

}

Loop; // Process all Things

The first section of code would be executed continuously by the RED and BLUE threads until there are
no more Things to be constructed. The second section of code is continuously executed by the PURPLE
thread until some control signal (not shown) indicates that there are no more Things to be processed.

At first glance it might be assumed that we have a race vulnerability on the NewThing array, however that
is not the case it is perfectly safe. Only the RED thread can set the [0] element from NULL to a non-NULL
value and only the PURPLE thread can set the [0] element from a non-NULL value to NULL. This bistable
implementation uses a form of Thread Local Storage (TLS) for the communication between threads, this
is simple to achieve requiring only that the code executing in a thread needs to be aware of which thread
it is executing in, which is a trivial problem.

While being safe the implementation above may not show optimal performance, if the average processing
time of creating a Thing in the RED and BLUE threads is much shorter than the time-slice that each
thread gets and is shorter than the average time taken for the PURPLE thread to maintain the linked list
then there can be an awful lot of waiting time in the system. This can be addressed be having the RED
and BLUE threads create short chains of Things and then post the address of the first Thing on the short
chain for addition to the master chain by the PURPLE thread.

The NewThing array provides a per-thread semaphore that is used to co-ordinate the producer and
consumer threads. This use of the term semaphore extends the railway analogy from which it was initially
derive to encompass the naval analogy where a semaphore (flag) was used to signal between ships.
Note that the RED and BLUE threads do not have to wait (block) after they have posted their Things to
the PURPLE thread for adding to the linked list, they only need to wait (block) if they come to post a new
Thing and the PURPLE thread has not yet captured and cleared their respective semaphore.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 30 of 60

One of the nice things about this kind of model is that we can easily collect profiling data and use it to
adjust the number of producer threads and the multiplexing of Things that are posted to the consumer
thread. This type of mechanism is used for different purposes, where it is appropriate, in the DX kernel,
the eventual intention in the DX implementation is to make the profiling and tuning adjustments autonomic
i.e. self-adjusting.

The example presented here is only one possible way of avoiding the thread synchronisation issues that
can lead to race conditions, designers and developers should look carefully at proposed implementation
patterns to develop appropriate solutions to individual cases.

4.8.4.2 Option #2: Tolerating Races

Another possible approach to avoiding the use of heavyweight locks to achieve thread synchronisation is
to use lightweight locks, with the knowledge that they can sometime fail and tolerate the failures or
resulting race conditions. This may be possible and even appropriate in certain circumstances.

The first thing that should be considered is the probability of a failure in a particular implementation and
workload which will therefore determine the likely frequency of the race condition. If the threads are
executing pieces of work that have variable size and are large enough that multiple time slices are
required for each piece of work then the probability of a race failure is reduced. Experiments have shown
that lightly loaded servers executing a lightly loaded application have an increased probability of seeing a
collision while using lightweight lock mechanisms. The second aspect to consider is what is the effect of a
failure? If the failure can be detected before any lack of application coherence occurs then there is no
danger because the failing operation can be backed out and re-driven when the collision is detected. If
the application fails catastrophically when a collision occurs then that may also be safe providing that it
happens only infrequently, an application re-run once a month may be a good trade-off against a loss of
10% of throughput through the use of safer synchronisation mechanisms.

The DX implementation of the lightweight lock/semaphore/mutex mechanism is a little more sophisticated
than the simple example introduced earlier. The following code shows the implementation used in the
ObjectCache object used by some DX Tools.

volatile UINT CacheMutex; // Cache Mutex

void ObjectCache::lockTheCache(int iThreadID)

{

 DWORD dwCWaits = 0; // Wait count

 DWORD dwCWaitQuanta = 0; // Wait Qanta

 while (CacheMutex != iThreadID)

 {

 while (CacheMutex != CACHE_MUTEX_FREE)

 {

 dwCWaits = 1;

 dwCWaitQuanta++;

 Sleep(MUTEX_WAIT_MILLIS);

 }

 CacheMutex = iThreadID;

 }

 dwWaits += dwCWaits;

 dwWaitQuanta += dwCWaitQuanta;

 return;

}

void ObjectCache::unlockTheCache(int iThreadID)

{

 if (CacheMutex == iThreadID) CacheMutex = CACHE_MUTEX_FREE;

 return;

}

The advantage of this design is that it allows a sequence of code to acquire the mutex and later in the
execution path call the lock function again which will detect a collision and force an additional wait state
before re-applying that mutex. The mechanism can still fail however the failure rate is very small and

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 31 of 60

applications that use the cache can check any object that is returned from the cache and ensure that it
was the object that was requested, if it does not get the correct object it can re-drive the request.

4.8.4.3 Option #3: Lightweight Mutexes with Atomic Locks

An alternative is provided by using the lightweight lock construct shown in option 2 but fixing the race
conditions on the lock by using Atomic operations to assert the lock (acquire the mutex). This is the
approach taken by the DX Kernel in situations where there is no lock free (option 1) solution available.
The kernel provides a set of APIs for implementing these mutexes. However race tolerant processing
remains a valid option to be applied in situations where it is warranted.

4.9 Request Sizing

The DX threading model has been designed to handle large workload tasks with heavy I/O requirements
(network and disk), high memory occupancy and moderate CPU processing, we use the term “Heavy Lift
Computing” (HLC) for these types of workload. The model is absolutely NOT suitable for the
implementation of “High Performance Computing” (HPC) applications.

To ensure that applications fit the “Heavy Lift” paradigm it is important to design the lowest level sub-
requests used in the application so that they do not contain too small a quantum of the total workload.
There are no definitive rules to determine what is the optimal size and characteristics of the lowest level
sub-requests, determining this is a part of the application tuning process. The most successful approach
has been to identity the smallest sensible unit of processing at the lowest level of functional
decomposition and then to make the lowest level sub-request capable of processing a variable number of
these base functional quanta. Tuning of the application consist of changing the number of threads in the
pool and varying the number of base functional quanta in the lowest level sub-requests, alongside
eliminating bottlenecks and resource contention.

The “Database Copier” (DbCopier) engine implements a good method for dealing with the sizing of the
lowest level requests. The functional quantum in the copier is a request to copy a single note from the
source database to the target database, the engine determines a value for how many quanta will be
combined into a sub-request by computation using size of the source database and the number of
documents to be copied. Databases that have many small documents will dispatch sub-requests with
more document copy operations than when copying databases with fewer larger documents. The
Database Copier also implements a mechanism for scaling the copy operations per request count by a
specified factor, this allows for rapid tuning of an implementation.

It has also been noted that if the functional quantum in an application has long wait times associated with
it, such as disk I/O to very slow devices or more usually network I/O over “long fat pipes” then these
benefit, from running more threads with a smaller size of sub-request.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 32 of 60

5. A Multi-Threaded Server Add-In Task
This section examines the design and coding of a multi-threaded Server Add-In task. The sample
application examined is the QCopy application.

Q(ueue)Copy

This utility server add-in task will make replica or non-replica copies of

notes databases across networks at light speed.The utility uses multi-

threading for the database I/O and can run up to 100 threads at the

same time. The databases to be copied and the parameters to use for each copy

operation are read from a queue in a control database.

USAGE:

Load QCopy ControlDatabase [-V|-T[:Area]|-D[:Area]] [-E][-M:nnn] [-X:nn][=IniFilename]

[ControlDatabase] - The name of the control database, relative to the server's Data

Directory

[-V]|[-T[:Area]]|[-D[:Area]] - Set logging level to Verbose, Trace (optionall the area

to trace) or Debug.

-M:nnn - Optional - Switch that sets the number of threads to use in each copy

operation

-X:nn - Optional - Switch that determines the max number of concurrent transactions.

-E - Optional - Switch that echoes the logging messages to the server console

5.1 Task 1: Populate the RunSettings Object

The normal method of populating the RunSettings object is to extend the RunSettings class with a custom
(AppRunSettings) class that will derive application settings that may change from run to run and populate
those at the same time as populating the base RunSettings members. This processing is not compulsory
so long as this phase yields a correctly populated RunSettings object.

The command line arguments are passed to the constructor of the AppRunSettings class, the constructor
will set any default values and parse the command line arguments to populate members in the base and
extending class.

Some of the parameters define the configuration of the application, these would be set as default values
in the application code. The QCopy application is a Server Add-In task that uses a repository database
and can run multiple instances on the same server. The following default settings are made in the
AppRunSettings class to specify this configuration.

RunningAsAddin = TRUE; // Running as server Addin Task

AllowMultipleAddins = TRUE; // Allow multiple addins

NoRepository = FALSE; // Allow use of the repository

NoAppLog = FALSE; // Allow Application Event Logging

EchoLog = FALSE; // Do not Echo to the console

NeedsMQ = TRUE; // Processor needs an MQ

CreateRepository = FALSE; // Do not Create the repository

CreateOnDemand = FALSE; // Do not ceate on demand

Once the AppRunSettings object is created the mainline code should check two switches in the object to
determine if the application should proceed.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 33 of 60

// Validate and build the Run Settings for this execution

arsLocal = new AppRunSettings(argc, argv);

if (!arsLocal->AllowExecution) // Exit silently if just showing usage

{

 delete arsLocal;

 return APPRC_NOERROR;

}

if (!arsLocal->IsValid) // Abort if validation failed

{

 std::cout << MSG_QCP0101S << std::endl;

 delete arsLocal;

 return APPRC_FATAL;

}

The AllowExecution flag is set to FALSE if the parameters were valid but indicated that the switches on
the command line (-?) indicated that the application usage messages should be shown and no execution
atrtempted. In this case the application just silently terminates, the console will show the application
usage messages.

The IsValid is set to FALSE if the application parameters were invalid or any other condition prevented
the valid instantiation of the AppRunSettings object. The application terminates with an error message
showing that the application could not be started.

Populating the RunSettings object is completed by setting the application name, short title and version in
the appropriate members.

// Set the identification in the Run Settings

strcpy_s(arsLocal->APPName, MAXAPPNAME, APP_NAME);

strcpy_s(arsLocal->APPTitle, MAXAPPTITLE, APP_TITLE);

strcpy_s(arsLocal->APPVer, MAXAPPVERSION, APP_VERSION);

The APP_NAME, APP_TITLE and APP_VERSION symbolic values are defined in the application header
file.

It should be noted that there is not a permanent application log available at this stage of processing, even
if the application intended to use one so all output is directed to STDOUT.

5.2 Task 2: Set the Thread Manager Policies

An object of the ThreadManagerPolicy class contains information used by the thread manager to
configure the multi-threaded runtime system. An application can configure an object of this class and use
it in the creation of the runtime system to influence many settings and constraints that are used by the
runtime system. Only members that should be set by the application are described here, other members
of the class are intended for internal use by the kernel.

Refer to the “KernelAPI Reference” document for details of the different settings that can be made in the
ThreadManagerPolicy class.

// Create and initialise a Thread Manager Policy

tmpInit = new ThreadManagerPolicy();

tmpInit->TPoolPolicy = TPOOL_POLICY_OBEYMAXMIN | TPOOL_POLICY_PRESTARTTARGET;

tmpInit->MaxThreads = arsLocal->ThreadCount; // Max Thread Count

tmpInit->MinThreads = arsLocal->ThreadCount; // Min Thread Count

tmpInit->TargetThreads = arsLocal->ThreadCount; // Initial target Thread Count

// Pending RQE Pool size

tmpInit->PendingRQECapacity = PCAP_PERTHREAD * arsLocal->ThreadCount;

// Rejoin RQE Pool size

tmpInit->RejoinRQECapacity = RCAP_PERTHREAD * arsLocal->ThreadCount;

tmpInit->AsyLogPoolEntries = 200; // Log pool size is 200 entries

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 34 of 60

// Set the priority policy

tmpInit->PriorityPolicy = PRIO_POLICY_AGERQS | PRIO_POLICY_PREFBOOST;

// Set CMLS Mode and the CMLS contraints

tmpInit->TPSchedMode = TPOOL_MODE_CMLS;

tmpInit->MaxPctL1Threads = 20; // 20% allocated to Feeders

tmpInit->MaxPctL2Threads = 20; // 20% allocated to UOWs

The count of threads is determined from the RunSettings which sets a default value that can be
overridden by a command line argument.
The PCAP_PERTHREAD and RCAP_PERTHREAD symbolic values allocate capacity in the pools to 20
requests per thread.

See the previous chapter for a discussion of Constrained Multi-Lane Scheduling (CMLS).

5.3 Task 3: Initialising the Run Time

The AppRunSettings and ThreadmanagerPolicy objects are passed to the constructor of the multi-
threaded run time (MTExecutive).

Initialising the Run Time will accomplish the following tasks.

 Initialise the memory pools and threads that provide the multi-threaded kernel

 Initialise the Thread Pool with the requested number of worker threads

 Implement the threading policies

 Initialise the Notes Runtime

 If the application is using a repository database this will be opened and the DBHANDLE made
available

 Logging will be initialised and directed to the appropriate destination(s)

 A default elapsed timer will be initialised

After the run time is initialised the IsInitialised and MTFunctionsAvailable flags are checked to make sure
that all of the expected kernel functionality is now available.

// Initialise the runtime environment

xeLocal = new MTExecutive(arsLocal, tmpInit, argc, argv);

if (!xeLocal->IsInitialised) // Abort if runtime failed to initialise

{

 std::cout << MSG_QCP0101S << std::endl;

 delete tmpInit;

 delete xeLocal;

 delete arsLocal;

 return APPRC_FATAL;

}

// Also check the the Thread Manager was initialised properly

if (!xeLocal->MTFunctionsAvailable)

{

 std::cout << MSG_QCP0101S << std::endl;

 delete tmpInit;

 delete xeLocal;

 delete arsLocal;

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 35 of 60

 return APPRC_FATAL;

}

5.4 Task 4: Construct the Processing Engines

The QCopy application uses two different engines to process transactions. The first engine is the QCopier
that performs copying of single databases. The second engine is the QCFeeder, this performs the task of
mapping transactions for multiple database collections into single database copy transactions that can be
processed by the QCopier.

// Construct the QCopier copy engine

qcLocal = new QCopier(xeLocal, 0);

// Set the multiplexor scaling factor

qcLocal->MultiplexScale = arsLocal->MultiplexScale;

// Construct the Feeder Transaction processor

qfLocal = new QCFeeder(xeLocal, 0);

5.4.1 The DbCopier Engine

The DbCopier is a typical example of the implementation of a major processing component in a DX
application, although it does implement a wider variety of processing options that would be encountered
in a less generic processor.

The engine can be invoked synchronously or asynchronously to execute a top-level request to copy a
single database, it creates multiple lower level requests to be executed asynchronously by itself to
achieve the requested copy operation.

The first phase of processing of a top-level request constructs the target database and copies all of the
data and design notes from the source database to the target database. After constructing the target
database the DbCopier posts two asynchronous requests for execution. The first request is to copy all of
the design notes in the source database and the second is to copy all of the data notes in the source
database. The copy of the design notes process will build a table of all of the design notes in the source
database and add to it any profile documents in the source database it then generates a number of
asynchronous requests to copy a small subset of all the design notes. The number of notes that will be
copied by each request is determined dynamically and is set between 5 and 100 notes per request. The
copy data notes process is almost identical to the copy design process, it creates a table of all of the data
notes in the source database and creates asynchronous requests to copy a small subset of these notes,
again between 5 and 100 notes are copied per request. The copy notes process copies the number of
notes provided in the request, if a note being copied is found to be a Folder Design note then the ID of the
note is added to a table for processing in a later phase of execution. If the copying of an individual note
fails then depending on the type of failure it may be re-tried by the DbCopier copy notes process or the
failures may be tolerated depending on the failure mode and the fault tolerance settings that are in effect.
If any errors are not fixed by a retry or tolerated then the copy notes process will signal that further
copying should be quenched by withdrawing the Run Permit in the top-level request.

The DbCopier will wait until all of the copy requests have completed successfully before moving on to the
next phase of processing.

The next phase of processing will perform any Folder maintenance and Full Text Index (FTI) maintenance
that are needed. Assuming that both Folder and FTI maintenance are needed then one asynchronous
request is created for each. The Folder maintenance request will use the table of Folder design notes that
was created earlier to generate asynchronous request each for the maintenance of an individual folder.

The DbCopier will wait until all of the Folder and FTI maintenance requests are completed before moving
on to the next phase of processing.

The following phases of the DbCopier processing are optional and are performed in sequence.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 36 of 60

 Refresh or Replace the design of the target database.

 Run a specified “conditioning” agent in the target database.

 Build any views in the target database.

 Perform a one-time replication with the source database.

5.4.2 The QCFeeder Engine

The QCFeeder engine asynchronously processes transactions that specify copying collections of
databases, it creates an individual copy transaction for each database in the collection and serialises
these transactions to the ready queue in the repository.

The QCFeeder creates a Domino eXplorer singleton object that it will use to expand collections to single
databases and a QCFeedProcessor singleton object that implements the DXReporter interface and does
the generation of individual copy transactions for each database discovered by the Domino eXplorer.

Each transaction that is received by the QCFeeder is passed to the Domino eXplorer to scan. The
eXplorer invokes the ReportOnThisDatabase interface implemented by the QCFeedProcessor class for
each database that is found during the scan. The ReportOnThisDatabase interface will use information
from the original “Feeder” transaction and the name of the source database found by the eXplorer to
construct a new QCopy transaction which is then written to the transaction queue in the repository ready
to be executed.

5.5 Task 5: Construct the Transaction Handler and Queue

The transaction handler is the core part of the application responsible for pumping work into the
application form the repository database transaction queues and for pumping the results of processing
back to the transactions in the repository.

The base TransactionHandler class is extended to form the AppTransactionHandler class, the extensions
provide the transaction handler to interact with the physical implementation of the queues in the
repository database.

// Construct the Application Transaction Handler

thLocal = new AppTransactionHandler(xeLocal, 0);

thLocal->qcMaster = qcLocal; // Set the copy engine in the transaction handler

thLocal->qfMaster = qfLocal; // Set the feeder engine in the transaction handler

The AppTransactionHandler code is also responsible for determining if transactions are to be executed by
the copy engine (QCopier) or they are “feeder” transactions and should be executed by the feeder
transaction processor (QCFeeder), hence the address of the two engines need to be set in the
AppTransactionHandler.

A TransactionQueue object describes the physical implementation of the transaction queues in the
repository database. Later in the applicatioin the object is posted to the multi-threaded kernel for
aynchronous execution by the transaction handler.

// Now construct a new Transaction Queue descriptor for the transaction queue

tqQCopy = new TransactionQueue();

// Set the D/B handle of the repository as the queue database

tqQCopy->hdbQueue = xeLocal->hdbRepository;

// Set the Queue Name

strcpy_s(tqQCopy->szQName, MAX_ELEMENT, QCQNAME);

// Define the views to use for the sub-queues

strcpy_s(tqQCopy->szReadyQName, MAX_ELEMENT, QUEUE_NEW_TRANS_VIEW);

strcpy_s(tqQCopy->szInProgressQName, MAX_ELEMENT, QUEUE_IP_TRANS_VIEW);

strcpy_s(tqQCopy->szDelayedQName, MAX_ELEMENT, QUEUE_DELAYED_TRANS_VIEW);

strcpy_s(tqQCopy->szSchedQName, MAX_ELEMENT, QUEUE_SCHED_TRANS_VIEW);

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 37 of 60

// Set the options that control the queue behaviours

tqQCopy->wQueueProtocols = QPFLAG_DEFAULT | QPFLAG_MONITOR_SCHED; // Default

Behaviour for startup & delay

tqQCopy->MaxConcurrent = arsLocal->MaxCTX; // Set initial Max Concurrency

tqQCopy->MinDelay = 15 * 60; // Delay Queue for minimum of 15 mins

tqQCopy->DelayCycleSecs = 10; // 10 seconds per dispatch loop

5.6 Transaction Flow

The following diagram shows the normal flow path for transaction execution.

The transaction handler detects that there are transactions available for processing in the queues in the
repository database.

The transaction handler creates a new QCopyRequest.

The QCopyRequest populates itself with the information from the transaction document detected by the
transaction handler.

Repository

Transactions

AppTransactionHandler

TransactionHandler

QCopyRequest

CopyRequest

QCopier

DbCopier

1

2

3

4 5

6

1

2

3

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 38 of 60

The transaction handler posts the request for asynchronous execution and monitors for completion of the
request.

The transaction handler notifies the QCopyRequest that it should serialise the processing results back to
the transaction document.

The QCopyRequest writes processing status, transaction log information and statistics back to the
transaction document in the repository database.

The QCopier class extends the DbCopier class to implement the ProxyLogMessage interface this allows
it to capture log messages from the DbCopier and record the messages in the individual requests so that
they can later be written back to the appropriate transaction document.

5.7 Task 6: Construct the Application Command Handler

The AppCommandHandler class extends the base CommandHandler class to provide additional
commands that are application specific or to modify or extend commands that are implemented by the
standard command handler. In the case of the QCopy application it extends the STATUS command and
the ABORT, STOP, SUSPEND and RESUME commands and implements a MAXTRANS command that
allows the number of transactions that can be executed simultaneously to be varied.

// Contruct the Application Command Handler and attach it to the Thread Monitor

achLocal = new AppCommandHandler(xeLocal);

achLocal->tqCurrent = tqQCopy; // Set the Queue address in the handler

achLocal->thCurrent = thLocal; // Set the Queue handler address

xeLocal->AttachCommandHandler(achLocal);

The final statement above activates the application command handler, from this point on it will respond to
any commands detected on the message queue.

Multiple instances of the QCopy Server Add-In Task are allowed to run on the same server at the same
time. The name of the Message Queue (MQ) used for each instance is determined dynamically during
start up. The first or only instance will have a queue named “QCOPY1” the second “QCOPY2” and so on.

5.8 Task 7: Initiate Transaction Processing

The TransactionQueue that was constructed earlier is now posted to the multi-threaded kernel for
asynchronous execution by the transaction handler. The transaction handler will continue to monitor the
transaction queues for any work to do, it continues running until it is told to stop, usually in response to a
signal from the main application code path.

// Dispatch the Transaction Queue for execution

xeLocal->PostARequest(PXR_WAITIF_BUSY | PXR_APP_WAIT,

4

5

6

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 39 of 60

 achLocal,

 thLocal,

 tqQCopy,

 RQATTR_REJOIN | RQATTR_CMLSL0,

 10,

 0);

The QCopy application sets the multi-threaded kernel to run in Constrained Multi-Lane Scheduling mode,
the transaction to run the transaction handler is flagged as a Level (Lane) 0 transaction i.e. a service
transaction that will run until the application shuts down (RQATTR_CMLSL0).

From this point on the application will execute any transactions that appear on the Ready Queue in the
repository database.

5.9 Task 8: Monitor for Application Completion

The main line of the application code should now sit in a loop looking for signals raised by the command
handler that indicate that the application should shut down.

// Monitor the command handler and respond to any requested changes in state

bProcessorShouldQuit = FALSE;

AddInSetStatusText(ADDIN_STATUS_RUNNING);

while (!bProcessorShouldQuit)

{

// Check if any terminal condition signals have been posted in the Command Handler

 if (achLocal->State & CH_STATE_QUIT)

 {

 // Detach the command handler

 xeLocal->AttachCommandHandler(NULL);

 AddInSetStatusText(ADDIN_STATUS_TERM);

 xeLocal->LogMessage(MSG_QCP0107I);

 AddInLogMessageText(MSG_QCP0107I, NOERROR);

 bProcessorShouldQuit = TRUE;

 }

 else

 {

 if (achLocal->State & (CH_STATE_STOP | CH_STATE_ABORT))

 {

 // Detach the command handler

 xeLocal->AttachCommandHandler(NULL);

 AddInSetStatusText(ADDIN_STATUS_TERM);

 xeLocal->LogMessage(MSG_QCP0108I);

 AddInLogMessageText(MSG_QCP0108I, NOERROR);

 bProcessorShouldQuit = TRUE;

 }

 else xeLocal->AppWait(TIMEOUT_EVENT_WAIT); // Sleep

 }

}

Note that the only states that cause a response in the code are QUIT, STOP or ABORT any other state
signals are ignored at this level and only result in the main application thread going to sleep.

5.10 Task 9: Terminate the Transaction Handler

After receiving a signal that the application should shut down the first thing to do is to signal to the
transaction handler that it should drain and shut down.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 40 of 60

// Wait for the transaction queue to drain before shutting down

tqQCopy->LocalPermit = FALSE;

The permit in the transaction queue is monitored continuously by the transaction handler, as soon as it is
revoked the handler will monitor for the completion of any transactions that are currently executing and
once these have completed it will shut down. The main application thread should wait in a loop until the
transaction queue rejoins the main processing.

while (iRejoinRC != RJR_NONE_EXIST)

{

 if (iRejoinRC != RJR_RETURNED) xeLocal->AppWait(PXR_BUSY_WAIT);

 iRejoinRC = xeLocal->GetRejoinRequest(achLocal, (void **) &tqReturned, 0);

}

5.11 Task 10: Clean up and Terminate the Application

Once the processing has been completed the application code should destroy the objects that have been
created and then terminate the application. The run time and the associated RunSettings should be the
last objects that are disposed of, this ensures that the logging interface is available for messages
generated during the termination process.

// Dispose of the inactive components

if (achLocal != NULL) delete achLocal;

if (tqQCopy != NULL) delete tqQCopy;

if (thLocal != NULL) delete thLocal;

if (qcLocal != NULL) delete qcLocal;

if (qfLocal != NULL) delete qfLocal;

// Processing is completed - shut down, clean up and exit.

if (!xeLocal->Close())

{

 std::cout << MSG_QCP0103S << std::endl;

 // Cleanup the local objects

 delete xeLocal;

 delete arsLocal;

 return APPRC_FATAL;

}

// Cleanup the local objects

delete xeLocal;

delete arsLocal;

return APPRC_NOERROR;

5.12 Active Code in the Application Transaction Handler

This section describes the code that is implemented in the key interfaces of the class that extends the
TransactionHandler.

5.12.1 MarshallTransaction Interface

The MarshallTransaction interface is invoked whenever the transaction handler detects that there is a
new transaction document available for execution in the repository. The job of the interface is to create a
request object from the transaction document in the database and pass this back to the transaction
handler with information about what should be done with the request.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 41 of 60

The first step is to remove any transaction level log that is present in the transaction document.

// Remove the old transaction history log from the transaction

stAPIRC = NSFItemDelete(hnTX, TRANSDOC_HISTORY, (WORD) strlen(TRANSDOC_HISTORY));

The next step is to flag the transaction document with a start of processing timestamp.

// Set the copy start time timestamp

OSCurrentTIMEDATE(&tdCurrent);

stAPIRC = NSFItemSetTime(hnTX, TRANSDOC_STARTTIME, &tdCurrent);

Next create the new QCopyRequest object and provide it with a text list that will be used to hold any
transaction log entries.

// Create a New QCopy Request

qcrNew = new QCopyRequest();

// Create a new Text List to hold the Transaction Log History

stAPIRC = ListAllocate(0, 0, FALSE, &qcrNew->hTXLog, &pList, &wRetLen);

// UnLock the memory for the list

OSUnlockObject(qcrNew->hTXLog);

Now the contents of the request object can be populated from the information in the transaction
document. The request object itself contains the code needed to find the information in the transaction
document.

// Populate the request from the transaction document

if (!qcrNew->populate(nidTX, hnTX))

The QCopy application contains code to perform checks against the source and target servers for a copy
request and if either of these servers is not available either because it is down or is too busy then it can
delay attempting to execute the transaction until later.

// Check the availability of the source and target servers

if (checkAvailability(qcrNew, iThreadID) != STATE_EXEC_REQUEST)

{

 // The transaction should be delayed

 dwDelayed++;

 delete qcrNew;

 return TX_DISPOSITION_DELAY;

}

The QCopyRequest is not passed directly to the processing engines instead a PartCopyRequest object is
passed that contains a pointer to the QCopyRequest. This is done to allow the processing engines to
present an isomorphic asynchronous execution entry point.

// Set up the rest of the information required by the interface

qcrNew->PermitRun = TRUE; // Set the Run Permit

// The Copy Request is sent as the parent to a low level copy request

pcrSend = new PartCopyRequest(qcrNew); // Create the low level request

pcrSend->CopyAction = COPY_DATABASE; // Top level request type

*txObject = pcrSend; // Address of the request object

The code now determines which processing engine should process the current request, the database
copy engine or the feeder transaction engine. The parameters that need to be set to execute the request
are set as appropriate and the code returns to transaction handler to dispatch the request.

// Determine if this is a copy transaction or a feeder transaction and dispatch

accordingly

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 42 of 60

if ((!xeLocal->IsThisADatabase(qcrNew->szSourceDatabase)) || (HasWildcards(qcrNew-

>szSourceDatabase)))

{

 // Feeder transaction

 *xxObject = qfMaster; // Processed by the QCFeeder engine

 *Attrs = RQATTR_REJOIN | RQATTR_CMLSL1;

 *Priority = 20;

}

else

{

 // Copy transaction

 *xxObject = qcMaster; // Processed by the QCopier engine

 *Attrs = RQATTR_REJOIN | RQATTR_CMLSL2;

 *Priority = 100;

}

return TX_DISPOSITION_NORMAL;

If any error or out-of-envelope condition is detected in the interface then it can return a signal to cause the
transaction handler to mark the transaction as being in error.

sprintf_s(szMsg, MAX_MSG, MSG_QCP0303E, nidTX);

LogTransactionMessage(szMsg, qcrNew->hTXLog, iThreadID);

// Append the history log to the transaction

AddHistory(qcrNew->hTXLog, hnTX, iThreadID);

delete qcrNew;

return TX_DISPOSITION_ERROR;

5.12.2 SerializeTransaction Interface

The SerializeTransaction interface is the counterpoint of the MarshallTransaction interface, the interface
is invoked whenever a request completes so that the resulting status, log and any other information can
be written back to the appropriate transaction document.

The first step is to open the transaction document.

// Open the transaction note

stAPIRC = NSFNoteOpen(hdbQueue, qcrOld->nidRequest, 0, &hnTransaction);

Next the transaction is stamped with a completion timestamp.

// Set the copy finish time timestamp

OSCurrentTIMEDATE(&tdCurrent);

stAPIRC = NSFItemSetTime(hnTransaction, TRANSDOC_FINISHTIME, &tdCurrent);

If the transaction completed successfully then the processing statistics are written to the transaction
document and the appropriate status updates are performed and the transaction log is added to the
document.

if (qcrOld->ReturnCode == RETURN_NOERROR)

{

 // Transaction completed ok

 // Write the stats to the request document

 qcrOld->writeStats(hnTransaction);

 // Mark the transaction as completed

 MarkTransactionCompleted(qcrOld->nidRequest, hnTransaction, tqCurrent,

iThreadID);

 dwCompleted++;

}

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 43 of 60

// Append the history log to the transaction

AddHistory(qcrOld->hTXLog, hnTransaction, iThreadID);

// Dispose of the transaction object

delete qcrOld;

If the transaction was not successful then the code must determine if it can be re-tried or it should be
marked as a permanent error. When a transaction is re-tried the original transaction is saved with all of
the processing information and a new transaction is generated as a clone of the original. There is a limit
on the number of times that a transaction can be re-tried, if this count is exceeded then the transaction is
marked as a permanent error. When a transaction is to be re-tried then is written back to the delayed
transaction queue for later execution.

// Mark the transaction as retried

MarkTransactionRetried(qcrOld->nidRequest, hnTransaction, tqCurrent, iThreadID);

dwRetried++;

// Create a new transaction document for the retry request

hdbLocalRep = xeLocal->GetMappedDBH(xeLocal->hdbRepository, iThreadID);

stAPIRC = NSFNoteCreate(hdbLocalRep, &hnNewTX);

// Increment the retry count

qcrOld->RetryCount++;

// Seralize the transaction data to the new request document

if (!qcrOld->serialize(0, hnNewTX, xeLocal))

// Get the NoteID

NSFNoteGetInfo(hnNewTX, _NOTE_ID, &qcrOld->nidRequest);

// Set the Urgent & Approved flags

NSFItemSetText(hnNewTX, TRANSDOC_URGENT_FLAG, "0", MAXWORD);

NSFItemSetText(hnNewTX, TRANSDOC_APPROVED_FLAG, "Yes", MAXWORD);

// Mark the new transaction as delayed

MarkTransactionDelayed(qcrOld->nidRequest, hnNewTX, FALSE, tqCurrent, iThreadID);

dwDelayed++;

// Save and close the new transaction

NSFNoteUpdate(hnNewTX, UPDATE_FORCE);

NSFNoteClose(hnNewTX);

5.12.3 MarkTransaction<status> Interfaces

These interfaces are used to mark transactions with the appropriate status values that are used to
determine their disposition on the various different transaction queues. The base TransactionHandler
class provides default implementations for these interfaces, these may be overridden in any inheriting
class to implement different transaction processing models.

void virtual MarkTransactionDelayed(NOTEID nidTX, NOTEHANDLE hnTX, BOOL bInProgress,

TransactionQueue *tqCurrent, int iThreadID)

void virtual MarkTransactionReady(NOTEID nidTX, NOTEHANDLE hnTX, BOOL bInProgress,

TransactionQueue *tqCurrent, int iThreadID)

void virtual MarkTransactionError(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

void virtual MarkTransactionInProgress(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

void virtual MarkTransactionCompleted(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

void virtual MarkTransactionRetried(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 44 of 60

The following describes the normal transaction life cycles managed by the transaction handler.

Transactions may be marked for once-off execution at a particular point in time or for repeated execution
at particular time intervals. These transactions have a status value of “SCHEDULED” and reside on the
Schedule Queue. When the execution time is reached or the scheduled interval expires then these
transactions are copied to the Ready Queue.

The Ready Queue is the queue monitored by the transaction handle to find work that is ready to be
executed. These transactions have a status value of “NEW”. When transactions are marshalled for
execution they are moved to the In Progress Queue. If the transaction should not be processed at the
current time, for whatever reason then it is marked with a status value of “DELAYED” and moved to the
Delayed Queue.

Transactions on the In Progress Queue are considered to be currently executing and have a status value
of “INPROGRESS”.

Once a transaction has completed processing it will be passed to the SerializeTransaction interface to
determine the disposition and move it to the appropriate queue. If the transaction completed successfully
it will be stamped with a status value of “COMPLETED” and moved to the Completed Queue. If the
transaction failed then the destination is determined by the transaction retry settings for the current queue
and transaction. If the transaction can be retried and the retry limit has not been exhausted then a new
copy of the transaction is marked with the “DELAYED” status value and moved to the Delayed Queue,
the original transaction is stamped with the “RETRIED” status value and moved to the Delayed Queue for
later execution. If the transaction has failed and does not support retries or the retry limit has been
exhausted then it will be marked with the “ERROR” status value and moved to the Error Queue.

The Delayed Queue is scanned occasionally and if a transaction has been on that queue for long enough
then it is marked with the “NEW” status value and returned to the Ready Queue.

When a transaction handle starts to process a queue then, depending on settings, it may scan the In
Progress Queue and process any transactions as if they had failed.

5.13 Active Code in the QCopier

The QCopier class extends the DbCopier class to implement the ProxyLogMessage interface this allows
it to capture log messages from the DbCopier and record the messages in the individual requests so that
they can later be written back to the appropriate transaction document.

The DbCopier calls the ProxyLogMessage interface for selected log messages to allow extending classes
to capture the log message before writing them to the standard run time log. In the case of the QCopy
application these messages are added to the Text List that is provided in the QCopyRequest by the
application transaction handler. There are size limits to a Text List so the interface implements a check for
an overflow of the Text List and if detected it sets a switch that causes the DbCopier code to no longer
write messages about folder processing to the interface, folder processing messages can be numerous if
the database being copied contains many folders.

As a last step in the process the passed message is written to the standard run time log interface.

5.14 Active Code in the Application Command Handler

Code in the CustomCommandHandler interface is used to implement custom commands or
extend/replace system commands that would be handled by the base CommandHandler class. In this
section we describe the processing for the STATUS command and the MAXTRANS command.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 45 of 60

All commands, both system and custom are passed to the interface as an encoded value. The selection
of the appropriate processing is performed in a switch construct. The default action is to return the passed
command for processing by the base class implementation.

switch(wCommand)

{

case MQ_COMMAND_xxxx:

 // Processing for the selected command

 break;

default:

 // Pass the command on to the system command processor

 wNextCommand = wCommand; // Pass the command on to the system processor

 break;

}

return wNextCommand;

The STATUS command implementation displays additional status messages and then passes the
command to the base class for it to display the standard output.

case MQ_COMMAND_STATUS:

 // This is the system status command - before it is issued we show some custom

messages

 if (tqCurrent == NULL) strcpy_s(szMsg, MAX_MSG, MSG_QCP0202E);

 else sprintf_s(szMsg, MAX_MSG, MSG_QCP0201I, tqCurrent->dwStarted, tqCurrent-

>dwCompleted, tqCurrent->dwStarted - tqCurrent->dwCompleted, tqCurrent-

>MaxConcurrent);

 xeLocal->LogMessage(szMsg, iThreadID);

 AddInLogMessageText(szMsg, NOERROR);

 sprintf_s(szMsg, MAX_MSG, MSG_QCP0208I, thCurrent->dwCompleted, thCurrent-

>dwError, thCurrent->dwRetried, thCurrent->dwDelayed);

 xeLocal->LogMessage(szMsg, iThreadID);

 AddInLogMessageText(szMsg, NOERROR);

 // Inform if the queue is suspended

 if (tqCurrent->QueueIsSuspended)

 {

 sprintf_s(szMsg, MAX_MSG, MSG_QCP0205I, tqCurrent->szQName);

 xeLocal->LogMessage(szMsg, iThreadID);

 AddInLogMessageText(szMsg, NOERROR);

 }

 wNextCommand = wCommand; // Pass the command on to the system processor

 break;

Note that the messages are written to the console (AddInLogMessageText) as well as to the run time log.

The MAXTRANS command alters settings in the transaction queue and displays the new setting. The
command is identified as being consumed by the CustomCommandHandler interface.

case MQ_COMMAND_MAXTRANS:

 // Change the max number of concurrent transaction that are being handled by

the Queue

 iNewMaxTrans = atoi(szOptions); // Get the new value to be set

 if (iNewMaxTrans == 0)

 {

 sprintf_s(szMsg, MAX_MSG, MSG_QCP0206E, tqCurrent->szQName);

 xeLocal->LogMessage(szMsg, iThreadID);

 AddInLogMessageText(szMsg, NOERROR);

 }

 else

 {

 iOldMaxTrans = tqCurrent->MaxConcurrent;

 tqCurrent->MaxConcurrent = iNewMaxTrans;

 sprintf_s(szMsg, MAX_MSG, MSG_QCP0207I, tqCurrent->szQName, iOldMaxTrans,

iNewMaxTrans);

 xeLocal->LogMessage(szMsg, iThreadID);

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 46 of 60

 AddInLogMessageText(szMsg, NOERROR);

 }

 wNextCommand = MQ_COMMAND_NULL;

 break;

5.15 Summary

The design pattern is essentially simple based on two or optionally three core classes assembled to
operate together.

Construct a processing engine that implements the Runnable interface, the processing engine should be
capable of responding to a request object by carrying out the required work by breaking it down into
smaller units of work and executing them asynchronously.

Construct an “Injector” that is capable of discovering work that needs to be done and injecting request
objects into the processing engine and recovering the results. The Injector model in this case is the
transaction handler however it can be any one (or more) of the following.

 A Transaction Queue

 A timer driven request generator

 An external event driven request generator

 Environmental monitor that triggers requests

 Requests generated from information passed on the command line

Decouple the processing engine from the injector by extending the processing engine class and the
processing request class to carry any information needed by the work injector. This decoupling makes the
processing engine more flexible and capable of implementation in additional application configurations.

Optionally construct a command processing class to handle any commands, these commands can trigger
the generation of work requests.

In the main line code of the application create singleton objects of the three classes and asynchronously
dispatch a request to initiate execution of the injector, then wait until a terminal state is detected.

Complex applications can be built up that contain multiple injectors and multiple, possibly chained
processing engines.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 47 of 60

6. Debug Builds
This section describes some of the additional features that are activated in DX applications when
compiled and linked with DEBUG settings in effect.

6.1 Logging

In addition to the ability to raise the execution logging level of a DX application when it is invoked to
Tracing (-T) or Debugging (-D) level, a capability that is present in both Debug and Release builds of
applications some DX modules contain additional debugging messages that only included in Debug
builds. These additional messages are always written to STDOUT, they are unnumbered but are always
prefixed by the literal “DEBUG:” in the message string. These development phase messages are no
longer removed from DX code modules during Quality Engineering reviews.

6.2 The Debug Helper Class

This class is only implemented for Windows Platforms and only exposes functionality in Debug
builds.

The Helper class is used to establish an object that provides additional diagnostic capabilities to the
runtime environment. Objects of this class should only be constructed in DEBUG build configurations of
an application.

The class provides services for monitoring application memory usage and producing Core Dumps on
demand.

6.2.1 Reporting on Memory Usage

Calls to the ReportMemoryUsage generate a report in the current log and optionally on the console of the
current allocation of memory by the application, the call also reports on the difference in memory
allocation since last reported and since the Helper was created.

The functions report on the memory usage by the application in the C runtime heap.

Sample Output:

Current(3) Working Set size: 30704 Kb, +328 Kb since last measured, +4580 Kb since first measured, Peak: 30704 Kb.

Current(3) Paged Pool use: 1252 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 1252 Kb.

Current(3) Non-Paged Pool use: 10 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 10 Kb.

Current(3) Normal Objects on the Heap: 28 , 0 since last measured, +7 since first measured, Peak: 28.

Current(3) Normal Objects Allocation: 124 Kb, 0 Kb since last measured, +2 Kb since first measured, Peak: 124 Kb.

Current(3) Client Objects on the Heap: 0 , 0 since last measured, 0 since first measured, Peak: 0.

Current(3) Client Objects Allocation: 0 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 0 Kb.

The report indicates the sequence number of memory reports “Current(3)” indicates the third time that the
reporting method has been called. Each line of output references a different memory statistic and shows
the current, delta since last reported, delta since first reported and the peak measurement of the
particular statistic. The statistics of particular focus for programmers are the count and size of “Normal
Objects” on the heap, steady increases in these values would indicate a leak of C++ objects from within
the application.

6.2.2 Creating Memory Dumps

The CreateMemoryDump function can be called at any point in an application to create a “minidump” file
of the application process including heap memory. The memory dump files are created in the

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 48 of 60

“IBM_TECHNICAL_SUPPORT” sub-directory in the Notes data directory. The minidump files can be
loaded into Visual Studio for contextual analysis or in the Windows Debugger (WinDbg).

The dump files are created with a standard name format:

DXDump-<appname>YYYYMMDD-HHMMSS.dmp.

Where <appname> is the name of the application and YYYYMMDD-HHMMSS is the timestamp that the
dump was created.

6.3 Memory Leak Detection

Debug compilations of DX applications also enables the C runtime memory leak tracing protocols. At any
point in a program a call can be made to the C Runtime “CheckMemoryLeaks()” (in fact this is a DX

implemented macro that invokes the actual CRT entry point: _CrtDumpMemoryLeaks())method and

this will report on each object that is allocated on the Heap giving the source file and line number where it
was allocated as well as the size of the object. A call to CheckMemoryLeaks should be made immediately
before an application terminates this will show any objects that remain allocated and provides an
excellent means of detecting and fixing leaks caused by failing to delete C++ objects or failing to free
memory allocations.

There is a good deal of information published on the internet on the topic of using the debug heap in C++
applications unfortunately a good deal of it is either misleading or downright incorrect.

The Microsoft debugging heap implements debugging traps that can be used to intercept all allocations
and de-allocations of memory on the heap, in addition it provides certain default behaviours. Memory
allocations on the heap are extended to include sentinel memory before and after each allocated chunk of
heap memory and the allocated chunks are filled with particular memory patterns when they are
allocated and freed, these measures can detect certain memory overwrites on the heap. Memory
applications on the heap are also supplemented with trace information indicating in what code module

and at what line number they were allocated, calls to the _CrtDumpMemoryLeaks() write a list of this

trace infoirmation for every allocation on the heap. One problem with using the stock functions in a C++
application is that all allocations on the heap that arre made during the creation of a C++ object report
that the allocation was made by code in the “new” operator in the standard C++ run time, which is not
much good for debugging leaks (unless you implement code to capture and analyse code stacks during
allocations). However you can fix this shortcoming with a limited number of definitions in your application
header files, in DX applications this is done for you in the PlatBase.h header file these modifications are
position sensitive so should always be in the first header file that is included. The changes make the trace
information for heap allocations for the creation of C++ objects report the module and line number where

the “new” operator is used and hence the output from _CrtDumpMemoryLeaks() calls now provides

more useful information without having to incorporate additional code.

The following shows the definitions from the PlatBase.h header file that enables this feature.

#ifdef _DEBUG

#define _CRTDBG_MAP_ALLOC // Have file & line recorded in memory allocations

#include <stdlib.h> // Standard functions

#include <crtdbg.h> // Include the runtime debugging macros

#endif

You should include all necessary C/C++ language includes at this point.

#ifdef _DEBUG

#define DEBUG_NEW new(_NORMAL_BLOCK, __FILE__, __LINE__)

#define new DEBUG_NEW

#endif

These statements switch the existing “new” operator form to use the debugging alternative.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 49 of 60

The section has so far only discussed the detection of memory leaks on the C/C++ heap, there is also the
issue of leaks of Domino resources and/or memory. Previous releases of the DX kernel code used to
include Domino resource tracking mechanisms similar to the Heap memory tracking described above,
however over time we have seen that following our coding style guides had so greatly reduced the
frequency of Domino resource leaks that it was no longer worthwhile maintaining this facility, so it has
been dropped. In place of run time resource tracking we now include testing in our regression tests that
specifically look for Domino resource leakages by employing the following protocol.

 Prepare the server or workstation to execute the test.

 Shut down the server or workstation.

 Re-start the server or workstation.

 Take an NSD of the server or workstation.

 Run the test, while the application is running take another NSD.

 Take another NSD of the server or workstation.

 Analyse the last NSD for any suspicious allocations that were made by the application under test,
if found check back in the first NSD to confirm that the allocation was not there before the
application was run.

6.4 Instrumentation

The DX kernel contains an instrumentation package that records certain data from events in the kernel,
the facility can be activated by performing a build with the DXIP symbolic defined (-DDXIP) this setting is
always asserted in Debug builds.

In a DX kernel that is built with the instrumentation active the kernel collects records and periodically
writes these records to an instrumentation recording file. The recording files are created in the
“IBM_TECHNICAL_SUPPORT” sub-directory in the Notes data directory.

The recording files are created with a standard name format:

DXDump-<appname>YYYYMMDD-HHMMSS.ipr.

Where <appname> is the name of the application and YYYYMMDD-HHMMSS is the timestamp that the
recording was created.

The DXIPA application can be used to display information from an Instrumentation Package Recording
(.ipr) file, see “Debugging Tools” below.

The current kernel ships with only a single recording record type defined and collected. These records are
collected at the point where a request completes execution in one of the worker threads in the threadpool.
The record contains the elapsed time that the worker thread was idle before the request arrived, this is
referred to as the “dwell time”. The record also contains the elapsed time that the request was executing
in the thread, this is referred to as the “mill time” and the dispatch priority of the request.

6.5 Debugging Tools

This section describes the debugging tools specifically developed for DX applications that are publicly
available.

6.5.1 DXTell

When initially testing a new or updated Server Add-In Task the first thing that you need to do is to prepare
a test server to do the testing on. While it is extremely easy to install a new Domino server it can be time
consuming to prepare that environment just for initial "kick the tyres" testing. Also if your code causes a

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 50 of 60

PANIC or other fatal condition you may have to wade your way through a rather large NSD to locate an
obvious (when you have seen it) but trivial problem. Well, there is a better way.

Little Known Fact #247

All of the Server API calls and functionality that is required to support a Server Add-In task is also
available in the Notes Workstation code.

Testing Methodology

Install the Server Add-In task in your Notes Executable directory. Have any local databases that are
needed by your Add-In available on the client. Shut down your Notes Client, this minimises the volume of
extraneous clutter that will appear in any NSD that you might have. Open two DOS Prompt windows. In
the first window you launch your server Add-In by typing what you would type as parameters to the Load
command if you were running your Add-In task on a server and your Add-In will start and, hopefully, begin
it's normal processing. Should a fault occur then you will be offered the choice of debugging the problem
with any of your installed debuggers. The second DOS prompt window that you opened is for the cunning
bit. When running your Add-In on a server you control your Add-In task through the use of "Tell"
command entered through the server console. From the second window you can use the DXTell program
to pass commands to your Add-In in the same way that you would on a server.

e.g. DXTell MyAddin stop

This will pass a "stop" command to the Add-In task, assuming that it has created a Message Queue (MQ)
with a name of "MyAddin" and that the Add-In task is correctly monitoring that Message Queue (MQ).

The second DOS Prompt Window can also be useful for running NSD commands. If you suspect that
your program is looping you can use the "nsd -kill" or "nsd -dumpandkill" commands to terminate or
terminate and dump your application. You can also use the "nsd -monitor" command to start an
interactive NSD session, this can be particularly useful to inspect the stacks of your application at regular
intervals to verify correct execution or to aid with problem diagnosis. Take note of the pid of your
application, this will be reported when nsd attaches to it, then periodically issue the "DUMP 0x<your pid>"
command (the pid is reported in hex so it is vital to prefix it with "0x").

When you have finished you should issue the "DETACH" command to detach nsd from all of the
processes and then issue the "QUIT" command to shut nsd down.

6.5.2 DXIPA

The DXIPA tool is provided to extract readable output from an Instrumentation Package Recording (.ipr)
file. The application can list records in a recording stream, produce frequency tables in text or histogram
form according to the command line options specified. All outputs from DXIPA are written to the standard
output file (STDOUT).

Syntax:

DXIPA <ipr file name> [-D][-S][-C]

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 51 of 60

The –D switch produces the output in list (dump) format, each record is annotated from the stream in the
order that they appear. A short sample is shown below with an explanation of the output.

DX Instrumentation Package Analyser (DXIPA) Version: 1.0.0 build: 02 analysing:

/home/domino/cyclotron/IBM_TECHNICAL_SUPPORT/DXIP-QCopy20111229-124517.ipr

+0102584, TID=9, Evt=1, Prio=10, Dwell=0, Mill=126.

+0102576, TID=8, Evt=1, Prio=10, Dwell=0, Mill=230.

+0102580, TID=7, Evt=1, Prio=15, Dwell=0, Mill=442.

+0102710, TID=9, Evt=2, Prio=15, Dwell=21, Mill=366.

+0103022, TID=7, Evt=2, Prio=11, Dwell=21, Mill=90.

+0102806, TID=8, Evt=2, Prio=10, Dwell=23, Mill=350.

+0103097, TID=9, Evt=3, Prio=11, Dwell=21, Mill=141.

+0102598, TID=10, Evt=1, Prio=15, Dwell=0, Mill=660.

+0103133, TID=7, Evt=3, Prio=11, Dwell=21, Mill=151.

+0102604, TID=3, Evt=2, Prio=15, Dwell=21, Mill=702.

Each line in the output shows that values collected from a single instrumentation record. The first column
+0102584 shows the elapsed time in milliseconds since the application was started that the record was

collected. The second column TID=9 shows the identity of the worker thread from which the record was

collected. The third column Evt=1 shows the relative event number on the thread this allows sequencing

of events from a single thread. The fourth column Prio=10 shows the priority at which the request was

dispatched to the worker thread. The fifth column Dwell=0 shows the number of milliseconds that the

worker thread was idle before processing the current request. The sixth column Mill=126 shows the

elapsed time in milliseconds that the current request took to complete execution.

The –S switch tells the analyser application to collate statistics on the stream in the recording file. A
sample is shown below with explanation.

Mill Times.

 3250 - 3299: 1.

 3200 - 3249: 1.

 3150 - 3199: 0.

 3100 - 3149: 0.

 3050 - 3099: 1.

 3000 - 3049: 1.

 2950 - 2999: 2.

 2900 - 2949: 0.

 2850 - 2899: 5.

 2800 - 2849: 3.

 2750 - 2799: 0.

 2700 - 2749: 1.

 2650 - 2699: 2.

 2600 - 2649: 2.

 2550 - 2599: 3.

 2500 - 2549: 4.

 2450 - 2499: 3.

 2400 - 2449: 5.

 2350 - 2399: 3.

 2300 - 2349: 4.

 2250 - 2299: 0.

 2200 - 2249: 1.

 2150 - 2199: 2.

 2100 - 2149: 4.

 2050 - 2099: 6.

 2000 - 2049: 8.

 1950 - 1999: 4.

 1900 - 1949: 2.

 1850 - 1899: 7.

 1800 - 1849: 4.

 1750 - 1799: 7.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 52 of 60

 1700 - 1749: 1.

 1650 - 1699: 2.

 1600 - 1649: 4.

 1550 - 1599: 7.

 1500 - 1549: 5.

 1450 - 1499: 5.

 1400 - 1449: 5.

 1350 - 1399: 3.

 1300 - 1349: 2.

 1250 - 1299: 7.

 1200 - 1249: 5.

 1150 - 1199: 4.

 1100 - 1149: 7.

 1050 - 1099: 8.

 1000 - 1049: 13.

 0950 - 0999: 9.

 0900 - 0949: 15.

 0850 - 0899: 16.

 0800 - 0849: 7.

 0750 - 0799: 16.

 0700 - 0749: 19.

 0650 - 0699: 23.

 0600 - 0649: 27.

 0550 - 0599: 35.

 0500 - 0549: 37.

 0450 - 0499: 60.

 0400 - 0449: 63.

 0350 - 0399: 78.

 0300 - 0349: 95.

 0250 - 0299: 100.

 0200 - 0249: 134.

 0150 - 0199: 125.

 0100 - 0149: 110.

 0050 - 0099: 32.

 Low outliers: 23, 24, 25, 23, 24, 23.

 High outliers: 79674, 95846, 243545.

The first column 3250 - 3299: shows the bounds of the interval of times that were counted in the bucket

being displayed, in this case from 3,250 milliseconds up to 3,299 milliseconds inclusive. The second
column shows the frequency with which timings fell within the bucket being listed, in this case 1.

The two lines at the bottom of the table show any times that were excluded from the table because they
were considered too low or too high.

The –C switch (Chart) will output the statistics as shown in the tables in the form of a frequency
histogram.

 150 -|

 |

 |

 | *

 | *

 125 -| **

 | **

 | **

 | ***

 | ***

 100 -| ****

 | *****

 | *****

 | *****

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 53 of 60

 | ******

 075 -| ******

 | ******

 | *******

 | ********

 | ********

 050 -| ********

 | ********

 | *********

 |***********

 |************

 025 -|*************

 |*************** *

 |*************** ** *

 |********************** * * * * **

 |** ********* ** *** **

 |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|

 0050 0550 1050 1550 2050 2550 3050 3550 4050 4550 5050

The Y axis shows the frequency and the X axis shows the timing value.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 54 of 60

7. Building DX Applications

7.1 Reference Platforms

DXTools and the DXCommon kernel are portable across multiple platforms that support the Notes API.
However there are a limited set of reference environments on which they are regularly built and
regression tested.

Windows:

Build Environment:

Microsoft Visual Studio 2005/2010/2011/2013

Version 8.0.50727.867 (vsvista.050727-8600)

Running on any supported windows workstation.

Note: Backward compatibility tests are done with Visual Studio 2003 as that is the officially supported
development platform for the Notes API.

Notes API Version 9.0.

Execution Environment:

Windows Standard Server 2008 R2 (32 bit and 64 bit).

Domino Server 9.0.1 FP1

Note: Execution environments from Domino 6.5.x through 9.0.x are regularly used.

Linux:

Build Environment:

Gcc Version: 4.1.2 for i386-redhat-linux.

Running on Redhat Linux 6.6

Notes API Version 9.0

Execution Environment:

Redhat Linux 6.6

Domino Server 9.0.1 FP1

Note: Execution environments from Domino 7.0.x through 9.0.x are regularly used.

Note: Some modules depend on the “curl” package for HTTP interaction this is standard in RHEL6
however other distributions may require installation of the “curl” RPM.

7.2 Notes API Installation

For both Windows and Linux DXTools assumes that the Notes API is installed in the default configuration
specified in the API documentation. Include and Library directory should be added to search paths as
indicated in the API documentation.

7.3 Project Directory Structure

The default Domino eXplorer development environment follows the Visual Studio paradigm of a “Solution”
directory that contains multiple “Project” directories with a single application directory per application, this
paradigm is followed on both Windows and Linux development environments.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 55 of 60

The standard DX header and code files are NOT designed to be added to the default include search
directories on either environment. The package expects to find a directory called “DXCommon” as a
project level directory in each solution directory that will be used to build DX applications, these should be
included in applications by relative re-direction. An include statement for the PlatBase.h header file that is
located in the “Platform” sub-directory of the DXCommon package would be coded as follows.

// Platform Includes

#include "../DXCommon/Platform/PlatBase.h" // Basic platform includes

Although a copy of the DXCommon package could be physically placed in each solution directory it would
be more usual to place the package in a shared location on the development workstation/server and then
create a symbolic link in each of the solution directories.

Windows:

The DXCommon kernel is supplied as a zipped archive (.zip). The contents of the archive should be
unpacked to either the <solution directory>\DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>\DXCommon directory.

As an example.

Unpack the DXCommon kernel into a directory “c:\usr\include\DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

mklink /D DXCommon “c:\usr\include\DXcommon-3.12.0”

Linux:

The DXCommon kernel is supplied as a gzipped archive (.tar.gz). The contents of the archive should be
unpacked to either the <solution directory>/DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>/DXCommon directory.

File ownership and access settings should be adjusted according to your local policies.

As an example.

Unpack the DXCommon kernel into a directory “/usr/include/DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

ln -s /usr/include/DXCommon-3.12.0 DXCommon

This deployment model allows different levels of the DXCommon package to be used in different
solutions without reconfiguring the development environment.

7.4 Installing the DXCommon Kernel Sources

Windows:

The DXCommon kernel is supplied as a zipped archive (.zip). The contents of the archive should be
unpacked to either the <solution directory>\DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>\DXCommon directory.

As an example.

Unpack the DXCommon kernel into a directory “c:\usr\include\DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

mklink /D DXCommon “c:\usr\include\DXcommon-3.12.0”

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 56 of 60

Linux:

The DXCommon kernel is supplied as a gzipped archive (.tar.gz). The contents of the archive should be
unpacked to either the <solution directory>/DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>/DXCommon directory.

File ownership and access settings should be adjusted according to your local policies.

As an example.

Unpack the DXCommon kernel into a directory “/usr/include/DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

ln -s /usr/include/DXCommon-3.12.0 DXCommon

7.5 Installing the Application Sources

Windows:

The DX Tools application sources are supplied as a zipped archive (.zip). Create an empty project called
<application name> in the <solution directory>. Then unpack the contents of archive into the project
directory and add each of the source and header files to the project. Add any needed kernel header and
code files to the project (the file are in the <solution directory>\DXCommon directory and sub-
directories).

Linux:

The DX Tools application sources are supplied as a gzipped archive (.tar.gz). Create the <application
name> project directory within the <solution directory> unpack the contents of the archive into that
directory. Review the supplied (minimal) make file and edit it to reflect any local conventions.

File ownership and access settings should be adjusted according to your local policies.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 57 of 60

7.6 Build Settings

Windows 32 bit:

The following non-default settings should then be made to the project settings. Any other settings should
not prevent a successful build.

Section/Entry Release Setting Debug Setting

General

 Character Set “Not Set” “Not Set”

C/C++

 Preprocessor

 Preprocessor Definitions WIN32;NDEBUG;_CONSOLE;W32 WIN32;_DEBUG;_CONSOLE;W32

 Code Generation

 Runtime Library Multi-threaded (/MT) Multi-threaded Debug DLL (/MTd)

 Struct Member Alignment 1 Byte (/Zp1) 1 Byte (/Zp1)

 Command Line

 Additional Options /Oy- /Oy-

Linker

 Input

 Additional Dependencies notes.lib notes.lib Dbghelp.lib Psapi.lib

 For Resource Loader winhttp.lib winhttp.lib

 For NE Resolver Wldap32.lib Wldap32.lib

Windows 64 bit:

Section/Entry Release Setting Debug Setting

General

 Character Set Not Set Not Set

C/C++

 Preprocessor

 Preprocessor Definitions WIN32;NDEBUG;_CONSOLE;NT;
W32;W;W64;ND64;_AMD64_;ND
64SERVER

WIN32;_DEBUG;_CONSOLE;NT;
W32;W;W64;ND64;_AMD64_;ND6
4SERVER

 Code Generation

 Runtime Library Multi-threaded (/MT) Multi-threaded Debug (/MTd)

 Struct Member Alignment 1 Byte (/Zp1) Default

 Command Line

 Additional Options /Oy- /Oy-

Linker

 Input

 Additional Dependencies notes.lib notes.lib Dbghelp.lib Psapi.lib

Notes:

Static linking of the runtime is used as since the advent of Side-By-Side (SXS) assembly of applications it
is increasingly common to find server environments that do not have the latest C/C++ Runtime manifests
installed.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 58 of 60

/Zp1 packing is a Notes API requirement as all Notes API structures are packed and not padded or
member aligned. IMPORTANT: Do not set this option for Windows x64 (64 bit) builds, Notes uses the
default structure packing on Windows 64 bit.

/Oy- is an important setting, without it the compiler will use the Frame Pointer as a general purpose
register rather than pointing to the current frame, this will cause any NSD dump to be complete garbage
and make debugging virtually impossible.

The additional libraries for the debug settings Dbghelp.lib and Psapi.lib are used to enable additional
debug capabilities such as memory leak detection that are provided by DXCommon kernel modules.

Applications that use the DXResourceLoader class require the Windows HTTP library (winhttp.lib).

Applications that use the NEResolver class require the Windows LDAP library (Wldap32.lib).

Linux:

A minimal and environment independent make file is supplied in the source distribution of any DXTool
application. The contents of the make file should be reviewed and any changes made to reflect local
conventions or environment. The following shows the necessary settings for building any application that
uses DX.

CC = g++

CCOPTS = -c -march=i486

NOTESDIR = $(LOTUS)/notes/latest/linux

LINKOPTS = -o <appname>

DEFINES = -DUNIX -DLINUX -DHANDLE_IS_32BITS

INCDIR = $(LOTUS)/notesapi/include

LIBS = -lnotes -lm -lnsl -lpthread -lc -lresolv -ldl

Compile:

$(CC) $(CCOPTS) $(DEFINES) -I$(INCDIR) <sources>

Link:

$(CC) $(LINKOPTS) <objects> -L$(NOTESDIR) -Wl,-rpath-link $(NOTESDIR) $(LIBS)

For applications that use the DXResourceLoader class add the –lcurl library to the LIBS = setting.

There is no specific build provided for a debug version of the application as the helper functions used for
additional debugging are for the Windows platform only. Sorry! There is an enhancement request to have
a linux specific debug helper added to the build.

NOTE: the output file name for the executable (specified in the LINKOPTS setting) should be folded to
lowercase if the application is to be run on a server.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 59 of 60

8. Deploying DX Applications
Windows:

Select “Build” and then Build <application name>.

Copy the resulting executable (<application name>.exe) and the associated Program Debug Database
(<application name>.pdb) to the Notes Executable directory on the server or workstation where you want
to run the application.

Linux:

From the <project> project directory issue the “make <application name>” command.

Copy the resulting executable (<application name>) to the Notes Executable directory where you want to
run the application. According to your local security policies and Domino install you may need to have an
administrator copy the executable and possibly change ownership of the executable.

The default ownership and attributes indicated by the Notes API documentation are as follows.

chown server <application name>

chgrp notes <application name>

chmod 2555 <application name>

8.1 Deploying an Application Specific Database

The installation of the application specific databases provided with DX Tools is done from a “Virtual
Template” that is available on the internet, this section assumes that you have available and installed the
Remote Database Create (Windows:
RDBCreate.exe Linux: rdbcreate) tool. If you do not have this tool then download the DXTool source for
RDBCreate and build it. Refer to the “Using RDBCreate” manual.

8.1.1 Install the Database

From a command window go to the Notes Executable directory where RDBCreate exists enter the
following command.

RDBCreate <server name> <database name> <templateURL> -V

Where:

<server name> is the abbreviated name of the server on which you want to install the control database.

<database name> is the name of the control database relative to the notes data directory.

<templateURL> is the URL for the Virtual Template you wish to install.

NOTE: RDBCreate can also be run directly on a server using the load command use the following
command syntax.

load RDBCreate <server name>|Local <database name> <templateURL> -V

Specify “Local” for the <server name> to create the database on the same server where the command is
being run.

DX Tools - Application Design Guide 3

Document: DXTOOLS-ADG-3 Date: 10/03/2015 16:33
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Application Design Guide 3 Page 60 of 60

9. Tuning DX Applications
The DXCommon kernel used in the DX Tools applications are the product of a research project that is
investigating methods of autonomic optimisation in multi-threaded applications. There are many internal
parameters that can be manipulated at the source level in order to effect changes in performance profile.
The distributed version of the applications only allows the manipulation of the number of threads in the
thread pool at run time (usually the –M:nnn> parameter. Try increasing the number of threads in use by
small increments, throughput should increase to match the increase in the number of threads until it
reaches a flat top. If increasing the number of threads shows no increase in throughput then it may be
that the application is being limited by too small sizing of the per request workload, refer to the discussion
on this topic in the “Threading Model” section of this document.

9.1 Long Fat Pipes

The term “Long Fat Pipes” refers to network connections that have plenty of capacity but a high round-trip
time, this type of connection is often encountered with intercontinental connections. Performance
investigations into TCP/IP on “long Fat Pipes” show that applications typically have problems filling the
pipe and therefore suffer from slow throughput as turnarounds on the connection lead to high idle times
during data transfers across the connection. A DX application can be started with more threads than the
default to help alleviate this slow throughput. Each thread uses a separate connection between the
source and target server and therefore a separate TCP/IP state this results in a lower probability that the
network connection will be in a completely idle state. For an individual connection you should experiment
with the thread setting to determine the minimum number of threads that maximises the throughput over
the connection.

9.2 Small Databases

When performing transfers that involve manipulating large numbers of very small databases then
throughput may suffer due to the overhead of serial operations on the database compared to the time
spent in data transfer. To alleviate this constraint increase the number of transactions that can be
executed simultaneously, this may also result in needing to increase the number of threads that are being
used.

