
Documentation

Domino eXplorer (DX) Kernel API Reference

For DX Version: 3.14.x

Author: Ian Tree

Owner: HMNL b.v.

Customer: Public

Status: Final

Date: 10/03/2015 15:34

Version: 3.14.0

Disposition: Open Source

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 2 of 70

Document History

Revision History

Date of this revision: 10/03/2015 15:34 Date of next revision None

Revision
Number

Revision
Date

Summary of Changes Changes
marked

0.1 02/06/11 Initial Base Version No

3.12.0 06/05/12 QE Version No

3.14.0 10/03/15 Updated for x64 support No

Acknowlegements

Frontpiece Design was produced by the chaoscope application.

IBM, the IBM Logo, Domino and Notes are registered trademarks of International Business Machines
Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All code and documentation presented is the property of Hadleigh Marshall (Netherlands) b.v. All
references to HMNL are references to Hadleigh Marshall (Netherlands) b.v.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 3 of 70

Contents
1. Introduction ... 8

1.1 References .. 8

2. Single Threaded Run Time API Reference ... 9

2.1 Object Constructor .. 9

2.1.1 Parameters .. 9

2.1.2 Returns .. 9

2.1.3 Constraints ... 9

2.1.4 Usage ... 9

2.2 Database and Repository Functions .. 9

2.2.1 Open Database .. 9

2.2.2 Create Database .. 10

2.2.3 Create Replica ... 11

2.2.4 Delete Database .. 12

2.2.5 BuildIndex(es) .. 13

2.2.6 Get and Set Database Title ... 13

2.2.7 Read Database Icon Flags .. 14

2.2.8 Get Database Statistics ... 15

2.2.9 Get Database Information .. 15

2.2.10 ACL Operations ... 16

2.3 Application and Error Support Functions .. 16

2.3.1 Logging Functions ... 16

2.3.2 Error Handling .. 17

2.3.3 Memory Dump Functions ... 18

2.3.4 Program Execution .. 19

2.4 Convenience Functions .. 19

2.4.1 Formatting and Data Conversion Functions .. 20

2.4.2 Memory Functions ... 21

2.4.3 Comparison Functions ... 21

3. Multi-Threaded Run Time API Reference ... 23

3.1 Object Constructor .. 23

3.1.1 Parameters .. 23

3.1.2 Returns .. 23

3.1.3 Constraints ... 23

3.1.4 Usage ... 23

3.2 Asynchronous Execution Functions .. 24

3.2.1 PostARequest Function ... 24

3.2.2 GetRejoinRequest Function ... 25

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 4 of 70

3.2.3 IsRejoinRecommended Function... 26

3.3 Constrained Multi Lane Scheduling Functions ... 27

3.3.1 GetThreadCount Function ... 27

3.3.2 GetCMLSRecommendation Function .. 27

3.4 Lightweight Thread Synchronisation Functions .. 28

3.4.1 AcquireAppMutex Function .. 28

3.4.2 FreeAppMutex Function .. 29

3.5 Thread Local Support Functions ... 29

3.5.1 GetMappedDBH Function .. 30

3.5.2 InvalidateNativeDBH Function ... 30

3.6 Miscellaneous Functions ... 31

3.6.1 ShowThreadStats Function ... 31

3.6.2 AttachCommandHandler Function .. 31

4. APIPackages Class .. 32

4.1 Object Constructor .. 32

4.2 Status Code Translation Functions ... 32

4.2.1 GetPackageID Function ... 32

5. CommandHandler Class ... 34

5.1 Object Constructor .. 34

5.1.1 Parameters .. 34

5.1.2 Returns .. 34

5.2 Handle Commands Function .. 34

5.2.1 Parameters .. 34

5.2.2 Usage ... 34

5.3 ParseCustomCommand Interface ... 35

5.3.1 Parameters .. 35

5.3.2 Returns .. 35

5.3.3 Usage ... 35

5.4 CustomCommandHandler Interface ... 35

5.4.1 Parameters .. 35

5.4.2 Returns .. 35

5.4.3 Usage ... 36

5.4.4 System Commands ... 36

5.4.5 System Commands for Debug Builds .. 38

5.5 GetAutoCommand Interface ... 38

5.5.1 Parameters .. 38

5.5.2 Returns .. 38

5.5.3 Usage ... 38

5.6 State Member .. 39

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 5 of 70

5.6.1 Usage ... 39

6. TransactionHandler Class .. 40

6.1 Object Constructor .. 40

6.1.1 Parameters .. 40

6.1.2 Returns .. 40

6.2 ProcessQueue Function ... 40

6.2.1 Parameters .. 40

6.2.2 Usage ... 41

6.3 MarshallTransaction Interface ... 41

6.3.1 Parameters .. 41

6.3.2 Returns .. 41

6.3.3 Usage ... 42

6.4 SerializeTransaction Interface .. 42

6.4.1 Parameters .. 42

6.4.2 Usage ... 42

6.5 Status Update Functions ... 43

6.5.1 Parameters .. 43

6.5.2 Usage ... 43

6.5.3 Transaction Queue Life Cycle ... 43

7. ElapsedTimer Class.. 45

7.1 Object Constructor .. 45

7.1.1 Returns .. 45

7.2 getElapsed Function ... 45

7.2.1 Returns .. 45

7.2.2 Usage ... 45

7.3 getElapsedMillis Function ... 46

7.3.1 Returns .. 46

7.3.2 Usage ... 46

8. Runnable Class .. 47

8.1 Object Constructor .. 47

8.2 ExecuteThisRequest Interface .. 47

8.2.1 Parameters .. 47

8.2.2 Usage ... 47

9. Debugging Classes... 48

9.1 Helper Class .. 48

9.1.1 Object Constructor ... 48

9.1.2 ReportMemoryUsage Function .. 48

9.1.3 CreateMemoryDump Function ... 49

10. Non-Exposed Classes .. 51

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 6 of 70

10.1 ThreadDispatcher Class .. 51

10.2 ThreadManager Class ... 51

10.3 ThreadManagerPolicy Class ... 51

10.4 ThreadMonitor Class ... 51

10.5 ThreadScheduler Class ... 51

10.6 WorkerThread Class ... 51

11. Supporting Classes... 52

11.1 RunSettings Class ... 52

11.1.1 Object Constructor ... 52

11.1.2 SetDefaults Interface ... 53

11.1.3 ValidateParameters Interface .. 53

11.1.4 ShowUsage Interface .. 53

11.1.5 ShowSettings Interface .. 54

11.1.6 AllowExecution Member .. 54

11.1.7 IsValid Member .. 54

11.1.8 EchoLog Member .. 54

11.1.9 NoRepository Member ... 55

11.1.10 NoAppLog Member .. 55

11.1.11 CreateRepository Member ... 55

11.1.12 RunningAsAddin Member .. 55

11.1.13 NeedsMQ Member ... 55

11.1.14 AllowMultipleAddins Member ... 56

11.1.15 LogLevel Member .. 56

11.1.16 TraceArea Member .. 56

11.1.17 szRepServer Member .. 57

11.1.18 szRepDb Member .. 57

11.1.19 APPName Member .. 57

11.1.20 APPTitle Member ... 58

11.1.21 APPVer Member .. 58

11.2 ThreadManagerPolicy Class ... 58

11.2.1 Object Constructor ... 58

11.2.2 TPSchedMode Member ... 58

11.2.3 TPoolPolicy Member .. 59

11.2.4 PriorityPolicy Member .. 59

11.2.5 TargetThreads Member ... 59

11.2.6 PendingRQECapacity Member .. 59

11.2.7 RejoinRQECapacity Member ... 60

11.2.8 AsyLogPoolEntries Member .. 60

11.2.9 MaxPctL0Threads Member ... 60

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 7 of 70

11.2.10 MaxPctL1Threads Member .. 60

11.2.11 MaxPctL2Threads Member .. 60

11.3 TransactionQueue Class ... 61

11.3.1 Object Constructor ... 61

11.3.2 wQueueProtocols Member .. 61

11.3.3 MaxConcurrent Member .. 62

11.3.4 MaxRunLimit Member .. 62

11.3.5 hdbQueue Member .. 62

11.3.6 MinDelay Member .. 62

11.3.7 ReQTXCycle Member .. 62

11.3.8 MaxReqCount Member .. 63

11.3.9 DelayCycleSecs Member .. 63

11.3.10 LocalPermit Member .. 63

11.3.11 QueueIsSuspended Member ... 63

11.3.12 szQueueName Member ... 63

11.3.13 szQServer Member .. 64

11.3.14 szQDbPath Member ... 64

11.3.15 szReadyQName Member ... 64

11.3.16 szInProgressQName Member .. 64

11.3.17 szDelayedQName Member .. 64

11.3.18 szSchedQName Member ... 65

12. Threading Model ... 66

12.1 Introduction .. 66

12.2 The Request Lifecycle ... 66

12.3 The Request Owner .. 68

12.4 Request Priority ... 68

12.5 Constrained Multi Lane Scheduling... 68

12.6 The Design of Runnable Classes .. 69

12.7 Request Sizing .. 70

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 8 of 70

1. Introduction
The Domino eXplorer (DX) was developed as a means for facilitating the rapid development of tools to be
used in projects that involve high volumes of data transformation in Notes Databases. DX has been, and
continues to be developed for use across a wide range of Domino versions and platforms. The reference
platforms are Domino 9.0.x on Windows Server 2003 R2 (32 & 64 bit) and Red Hat Linux 6.6. DX is also
used as a research tool to investigate various aspects of Autonomic Systems, in particular Autonomic
Throughput Optimisation.

Standardised utilities have also been built around some of the functional DX classes, these are published
as “DX Tools” and can save time by providing off-the-shelf processing to be incorporated into complex
transformations that need high throughput rates.

DX consists of a set of “Kernel” classes and a collection of “Functional” classes this document provides
details of the Domino eXplorer (DX) Kernel API functions. DX provides a single-threaded or multi-
threaded runtime environment for applications, the runtime exposes core functionality to applications
through the Kernel API. The API for the “Functional” classes are documented in the “DX Tools: Class
Catalogue” publication.

1.1 References

Title Version Date Author

DX Tools Class Catalogue 3.12 17/12/2011 HMNL

DX Tools Application Design Guide 3.0 23/01/2012 HMNL

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 9 of 70

2. Single Threaded Run Time API Reference
This section contains the API specifications for all public members and functions that are exposed by the
Single Threaded (ST) run time kernel object of the Domino eXplorer.

Header File: DXCommon/ExecEnvironment.h

2.1 Object Constructor

ExecEnvironment(RunSettings *rsIn, int argc, char *argv[])

2.1.1 Parameters

Name Type Use

rsIn RunSettings * A pointer to a validated RunSettings object, or more usually an
object of a class that extends the RunSettings class.
The RunSettings class contains configuration data that
determines how the Run Time is initialized.
See “Supporting Objects” for more details.

argc Int Count of parameters passed to the main entry point of the
application.

argv char * [] Pointers to the array of parameters passed to the main entry
point of the application

2.1.2 Returns

A pointer to the initialized ExecEnvironment object.

2.1.3 Constraints

None.

2.1.4 Usage

Creating a new Run Time object in your application will initialize the run time environment, including the
underlying Notes/Domino run time. If a Repository Database is specified then this will be made available
to the application and, according to the current settings logging will be initiated in the Repository.

2.2 Database and Repository Functions

2.2.1 Open Database

DBHANDLE OpenDatabase(char *szServer, char *szDatabase)

DBHANDLE OpenDatabase(char *szServer, char *szDatabase, int iThreadID)

DBHANDLE OpenDatabase(char *szServer, char *szDatabase, USHORT *usMode)

DBHANDLE OpenDatabase(char *szServer, char *szDatabase, USHORT *usMode, int

iThreadID)

DBHANDLE OpenDatabase(char *szServer, char *szDatabase, DBID *dbidDB)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 10 of 70

DBHANDLE OpenDatabase(char *szServer, char *szDatabase, DBID *dbidDB, int

iThreadID)

DBHANDLE OpenDatabase(char *szServer, char *szDatabase, WORD wOpenFlags, DBID

*dbidDB, int iThreadID)

2.2.1.1 Parameters

Name Type Use

szServer char * Pointer to a null terminated character string that contains the
name of the server on which you want to open the database.
The name should be in either canonical or abbreviated format.
An empty string or a string containing the literal value “Local”
will cause the database to be opened on the local client or
server.

szDatabase char * Pointer to a string containing the path and database name that
is to be opened. The path is provided relative to the Notes Data
directory. Alternatively the string can contain the ReplicaID of
the database that is to be opened. The replica id should be
provided in one of the following formats.
XXXXXXXXXXXXXXXX
XXXXXXXX:XXXXXXXX
__XXXXXXXXXXXXXXXX.nsf

iThreadID Int For single threaded applications always specify 0 to indicate the
main thread of a program.

usMode USHORT * The address of a USHORT that will be filled in with the Mode
(Database or Directory) of the item that was opened.

dbidDB DBID * The address of a DBID that will be filled in with the DBID of the
open database.

wOpenFlags WORD Flags that are passed to the Notes API NSFDbOpen call. See
DBOPEN_xxx symbolic values in the Notes API reference.

2.2.1.2 Returns

A DBHANDLE to the open database or NULLHANDLE if the database could not be opened.

2.2.1.3 Constraints

None.

2.2.1.4 Usage

If the call returns a NULLHANDLE then the Notes API Return Code (STATUS) can be obtained by calling
GetLastOpenError(). If the DBOPEN_FORCE_FIXUP flag is specified then the standard Notes API call
will fail if the database is remote, OpenDatabase() will perform the fixup on a remote database and then
open the database without the flag set.

2.2.2 Create Database

DBHANDLE CreateDatabase(char *szServer, char *szDatabase)

DBHANDLE CreateDatabase(char *szServer, char *szDatabase, int iThreadID)

DBHANDLE CreateDatabase(char *szServer, char *szDatabase, BOOL bTXLog, int

iThreadID)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 11 of 70

DBHANDLE CreateDatabase(char *szServer, char *szDatabase, BOOL bTXLog, DBID

*dbidDB, int iThreadID)

2.2.2.1 Parameters

Name Type Use

szServer char * Pointer to a null terminated character string that contains the
name of the server on which you want to create the database.
The name should be in either canonical or abbreviated format.
An empty string or a string containing the literal value “Local”
will cause the database to be created on the local client or
server.

szDatabase char * Pointer to a string containing the path and database name that
is to be created. The path is provided relative to the Notes Data
directory.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

bTXLog BOOL Specify TRUE to have transaction logging enabled on the new
database or specify FALSE if transaction logging is not required.

dbidDB DBID * The address of a DBID that will be filled in with the DBID of the
new database.

2.2.2.2 Returns

A DBHANDLE to the open database or NULLHANDLE if the database could not be created.

2.2.2.3 Constraints

If you are creating a database on a remote server then you will need the rights to be able to do this.

2.2.2.4 Usage

If the call succeeds then the database will have been initialised with a default ACL and a default view and
design collection.

Default ACL

<current user or server> - Manager

-Default- - No Accedd

Anonymous - No Access

If the database is created on a server then the following additional entries are set.

<target server> - Manager (Admin Server)

LocalDomainServers - Manager

LocalDomainAdmins - Manager

If the call returns a NULLHANDLE then the Notes API Return Code (STATUS) can be obtained by calling
GetLastOpenError().

2.2.3 Create Replica

DBHANDLE CreateReplica(char *szServer, char *szDatabase, DBHANDLE hdbSrc,

DBID *dbidDB)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 12 of 70

DBHANDLE CreateReplica(char *szServer, char *szDatabase, DBHANDLE hdbSrc,

DBID *dbidDB, int iThreadID)

DBHANDLE CreateReplica(char *szServer, char *szDatabase, BOOL bTXLog,

DBHANDLE hdbSrc, DBID *dbidDB, int iThreadID)

2.2.3.1 Parameters

Name Type Use

szServer char * Pointer to a null terminated character string that contains the
name of the server on which you want to create the database.
The name should be in either canonical or abbreviated format.
An empty string or a string containing the literal value “Local”
will cause the database to be created on the local client or
server.

szDatabase char * Pointer to a string containing the path and database name that
is to be created. The path is provided relative to the Notes Data
directory.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

hdbSrc DBHANDLE Handle of the database that the new database will be a replica
of.

bTXLog BOOL Specify TRUE to have transaction logging enabled on the new
database or specify FALSE if transaction logging is not required.

dbidDB DBID * The address of a DBID that will be filled in with the DBID of the
new replica.

2.2.3.2 Returns

A DBHANDLE to the open database or NULLHANDLE if the replica could not be opened.

2.2.3.3 Constraints

If you are creating a replica on a remote server then you will need the rights to be able to do this.

2.2.3.4 Usage

If the call returns a NULLHANDLE then the Notes API Return Code (STATUS) can be obtained by calling
GetLastOpenError().

2.2.4 Delete Database

STATUS DeleteDatabase(char *szServer, char *szDatabase, BOOL bMakeOffline,

int iThreadID)

2.2.4.1 Parameters

Name Type Use

szServer char * Pointer to a null terminated character string that contains the
name of the server from which you want to delete the
database. The name should be in either canonical or
abbreviated format. An empty string or a string containing the
literal value “Local” will cause the database to be deleted from
the local client or server.

szDatabase char * Pointer to a string containing the path and database name that
is to be deleted. The path is provided relative to the Notes

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 13 of 70

Data directory.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program.

bMakeOffline BOOL Specify TRUE to force the database to be taken offline before it
is deleted and FLASE if not.

2.2.4.2 Returns

The STATUS from the underlying Notes API calls.

2.2.4.3 Constraints

Specifying bMakeOffline as TRUE to force the database to be taken offline before it is deleted will only
work for local (i.e. on the same domino instance where the application is running) databases.

2.2.4.4 Usage

Use the setting to force a database offline before deletion if you are running on a server that is using
Transaction Logging.

2.2.5 BuildIndex(es)

BOOL BuildIndexes(void)

BOOL BuildIndexes(DBHANDLE hdbIX)

BOOL BuildIndexes(DBHANDLE hdbIX, int iThreadID)

void BuildIndex(DBHANDLE hdbIX, NOTEID nidView, int iThreadID)

2.2.5.1 Parameters

Name Type Use

hdbIX DBHANDLE Handle of the database in which the view index(as) are to be
built.

nidView NOTEID The NOTEID of the view note that will have the view index built.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.2.5.2 Returns

BuildIndexes returns a BOOL with TRUE indicating that the view index rebuilds succeeded and FALSE
indicating that the rebuilds could not be completed. BuildIndex does not return anything.

2.2.5.3 Constraints

None.

2.2.5.4 Usage

The first variant BuildIndexes(void) will rebuild all of the view indexes in the Repository Database, if

one is in use.

2.2.6 Get and Set Database Title

void GetDbTitle(DBHANDLE hDB, char *szTitle, int iThreadID)

BOOL SetDbTitle(DBHANDLE hDB, char *szTitle)

BOOL SetRepositoryTitle(char *szTitle)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 14 of 70

2.2.6.1 Parameters

Name Type Use

hDB DBHANDLE Handle of the database from which to get or set the title.

szTitle char * Pointer to a null terminated character string that contains the
title to be set or in which the title will be returned.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.2.6.2 Returns

The two “Set” functions return a BOOL with TRUE indicating success and FALSE indicating that the call
did not complete. The “Get” does not return anything but fills the buffer with the database title.

2.2.6.3 Constraints

None.

2.2.6.4 Usage

The SetRepositoryTitle function will set the title in the current Repository Database if one is in use.

2.2.7 Read Database Icon Flags

STATUS GetIconFlags(DBHANDLE hDB, char *szFlags, int iMaxLen)

STATUS GetIconFlags(DBHANDLE hDB, char *szFlags, int iMaxLen, int iThreadID)

BOOL IsIconFlagSet(DBHANDLE hDB, char cFlag)

BOOL IsIconFlagSet(DBHANDLE hDB, char cFlag, int iThreadID)

2.2.7.1 Parameters

Name Type Use

hDB DBHANDLE Handle of the database from which the flags will be read or
tested.

szFlags char * Pointer to a buffer that will contain the returned flag array as a
null terminated string.

iMaxLen int Length of the buffer to receive the flags

cFlag char Single character flag to be tested for.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.2.7.2 Returns

The GetIconFlags returns the STATUS from the underlying Notes API cal . IsIconFlagSet returns a
BOOL, TRUE if the flag is set and FALSE if the flag is not set.

2.2.7.3 Constraints

None.

2.2.7.4 Usage

For the meaning of the individual flags see the CHFLAG_ area of stdnames.h in the Notes API.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 15 of 70

2.2.8 Get Database Statistics

DWORD GetDataDocumentCount(DBHANDLE hDB, int iThreadID)

DWORD GetDbAllocatedSize(DBHANDLE hDB, int iThreadID)

DWORD GetDbFreeSpace(DBHANDLE hDB, int iThreadID)

2.2.8.1 Parameters

Name Type Use

hDB DBHANDLE Handle of the database from which the statistics will be
retrieved.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.2.8.2 Returns

The GetDataDocumentCount returns the number of non-design documents in the database. The
GetDbAllocatedSize returns the size of the database in 1 Kb (1024 byte) chunks. GetDbFreeSpace
returns the amount of free space in the database in 1Kb (1024 byte) chunks. All functions return -1 if the
statistic could not be determined.

2.2.8.3 Constraints

None.

2.2.8.4 Usage

2.2.9 Get Database Information

void GetReplicaID(DBHANDLE hDB, char *szRepID, int iLen, int iThreadID)

2.2.9.1 Parameters

Name Type Use

hDB DBHANDLE Handle of the database from which the information will be
retrieved.

szRepID char * Pointer to a character buffer where the null terminated,
decorated Replica ID will be returned.

iLen int Length of the buffer provided to hold the Replica ID.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.2.9.2 Returns

Nothing.

2.2.9.3 Constraints

None.

2.2.9.4 Usage

The decorated Replica ID is returned in the following format: "%008lX:%008lX".

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 16 of 70

2.2.10 ACL Operations

BOOL GetACLRoles(HANDLE hACL, ACL_PRIVILEGES *pAllPrivs, char *szRoles, int

iThreadID)

2.2.10.1 Parameters

Name Type Use

hACL HANDLE Handle of the ACL from which to derive the Roles.

pAllPrivs ACL_PRIVILEGES Pointer to an ACL_PRIVILEGES structure that will be populated
with the Roles that are available in the database..

szRoles char * Pointer to a character buffer where all of the Role names will
be placed.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.2.10.2 Returns

BOOL, TRUE if the call succeeded otherwise FALSE.

2.2.10.3 Constraints

None.

2.2.10.4 Usage

The function will format a string in the form “[<role name>][<role name>]” an entry will be provided for
each possible Role (i.e. privilege bit), if a Role is not defined for a particular bit then the entry is returned
as a pair of empty braces “[]”.. The bits in the ACL_PRIVILEGES structure will indicate which Roles are
actually defined in the ACL.

2.3 Application and Error Support Functions

2.3.1 Logging Functions

BOOL LogMessage(char *szMsg)

BOOL LogMessage(char *szMsg, int iThreadID)

BOOL LogVerbose(char *szMsg)

BOOL LogVerbose(char *szMsg, int iThreadID)

BOOL LogTrace(int iTraceArea, char *szMsg)

BOOL LogTrace(int iTraceArea, char *szMsg, int iThreadID)

void LogSetVerbose(void)

void LogSetNormal(void)

void LogSetTrace(int iTraceArea)

void LogSetDebug(int iTraceArea)

void LogSetEchoOn(void)

void LogSetEchoOff(void)

int LogGetLevel(void)

BOOL LogIsEchoing(void)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 17 of 70

void LogPushSettings(void)

void LogPopSettings(void)

void LogCommit(void)

2.3.1.1 Parameters

Name Type Use

szMsg char * Pointer to a null terminated string buffer containing the
message that is to be written to the log.

iTraceArea int A reference to a particular area of the kernel that is associated
with the current message.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.3.1.2 Returns

The Logxxxx functions that return a BOOL will return TRUE if the call succeeded and FALSE if problems
were encountered during the logging operation. LogGetLevel returns the logging level that is currently in
effect.

Logging Levels

LOGLEVEL_DEBUG 50 - Full debugging

LOGLEVEL_TRACE 40 - Include detailed functional tracing

LOGLEVEL_VERBOSE 30 - Include additional functional messages

LOGLEVEL_NORMAL 20 - Normal message level

LogIsEchoing returns an indication TRUE if the messages that are being written to the log are also being
echoed to the console, FALSE if not.

2.3.1.3 Constraints

None.

2.3.1.4 Usage

LogVerbose and LogTrace functions will only write to the log if the current logging level is at or above
the respective level. LogVerbose will only write log entries if the current level is VERBOSE, TRACE or
DEBUG. LogTrace will only write log entries if the current level is TRACE or DEBUG, in addition
LogTrace messages will only write log messages if the current trace area is the same as that supplied in
the logging call or the current trace area is set to ANY (0).

The LogPushSettings and LogPopSettings will store an restore the current settings of the logging level
and the trace area.

The LogSetxxx functions will set the current logging level and, if appropriate, the trace area.

The LogCommit function will force the current logging mechanism to write any buffered output.

2.3.2 Error Handling

void GetAPIMessage(STATUS stAPICode, char *szMsg)

void GetWINAPIError(DWORD dwError, char *szMsg)

void GetUNIXAPIError(int iError, char *szMsg)

void LogWINAPIError(void)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 18 of 70

void LogWINAPIError(int iThreadID)

2.3.2.1 Parameters

Name Type Use

stAPICode STATUS A status code returned from a Notes API call.

szMsg char * Pointer to a string buffer where the formatted error message
will be placed. The buffer should be at least MAX_MSG + 1
bytes in size.

dwError DWORD An error code that is set as the result of a call to a Windows API
call, normally retrieved using the GetLastError() function.

iError int An error code that is set as the result of a UNIX API call

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.3.2.2 Returns

Nothing.

2.3.2.3 Constraints

None.

2.3.2.4 Usage

The GetxxxMessage functions take a Notes API, Windows API or a UNIX API error code and return a
string that includes the formatted code and an explanation of the error. The LogWINAPIError functions
will retrieve that last recorded error code and log a message that formats and explains the code.

2.3.3 Memory Dump Functions

void DumpMemory(void *lpMem, int iLen, char *szSymbol)

void DumpMemory(void *lpMem, int iLen, char *szSymbol, int iThreadID)

void DumpMemoryExt(void *lpMem, int iLen, char *szSymbol)

void DumpMemoryExt(void *lpMem, int iLen, char *szSymbol, int iThreadID)

2.3.3.1 Parameters

Name Type Use

lpMem void * A pointer to the area of memory to be dumped.

iLen int The length of the memory area to dump, in bytes.

szSymbol char * A null terminated string that is used to annotate the dump.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program.

2.3.3.2 Returns

Nothing.

2.3.3.3 Constraints

None.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 19 of 70

2.3.3.4 Usage

The DumpMemory function will format a dump (hexadecimal and character) of the area of memory
supplied by the pointer and of the supplied length and writes the dump output to the current log. The
dump will only be written if the current logging level is DEBUG.

The DumpMemoryExt functions do the same as the DumpMemory functions but will produce the output
whatever the current logging level is.

2.3.4 Program Execution

int OSLoadProgram(OSPROG_DEF *ospProg, int iThreadID)

int OSLoadSrvCommand(OSPROG_DEF *ospProg, int iThreadID)

2.3.4.1 Parameters

Name Type Use

ospProg OSPROG_DEF * A pointer to the structure that describes a program or a
command that is to be executed

iThreadID Int For single threaded applications always specify 0 to indicate the
main thread of a program.

typedef struct {

 char szAppName[MAXPATH]; // The name of the program to execute

 char szWorkingDir[MAXPATH]; // The working directory to be set for

execution

 char szAppCmdLine[MAXPATH]; // The command line to be passed to the

application

 DWORD dwFlags; // Flags controlling how the application is

run

 DWORD dwReturnCode; // The exit code from the application

 DWORD dwProcessId; // The process ID of the application

}OSPROG_DEF;

2.3.4.2 Returns

The return value is an integer code indicating if the program was run or started. A return code of zero
indicates that the named program was successfully started or run.

2.3.4.3 Constraints

None.

2.3.4.4 Usage

Use the OSLoadSrvCommand variant of the call to run commands that are normally run as server
commands, such as compact (ncompact.exe) etc.

2.4 Convenience Functions

The DX runtime provides a large number of convenience functions, these are documented in this section
of the document. The functions are split into separate functional groups.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 20 of 70

2.4.1 Formatting and Data Conversion Functions
BOOL GenUniqueID(char *szUniqueID, int iUniqueIDLen, int iThreadID)

void populateUNID(char *szUNID, UNID *uidFormatted)

void GetUNIDString(UNID unidSource, char *szTarget, int iTargetLen, BOOL bExtString,

int iThreadID)

void TrimToUpper_s(char *szDest, int iDest_Size, char *szSrc)

void RemoveEscapes(char *szMsg, int iStr_Size)

int xtoi(char *szHex)

2.4.1.1 Parameters

Name Type Use

szUniqueID char * Pointer to a buffer that will receive the generated Unique ID
value.

iUniqueIDLen Int Size of the buffer that will receive the generated Unique ID
value.

szUNID char * Pointer to a null terminated character string holding a
formatted hexadecimal UNID value.

uidFormatted UNID * Pointer to a UNID structure that will be populated from the
formatted string.

uidSource UNID * Pointer to a UNID structure that is to be formatted as a
readable hexadecimal encoded character string.

szTarget char * Pointer to a buffer that will receive the formatted UNID.

iTargetLen Int Size of the buffer that will receive the formatted UNID.

bExtString BOOL Switch that determines the format of the returned UNID string.

TRUE – Use decorated format
"OF: %008lX:%008lX - ON: %008lX:%008lX"

FALSE – Use undecorated format
"%008lX%008lX%008lX%008lX"

szDest char * Pointer to a buffer that will receive the trimmed character
string (null terminated).

iDest_Size Int Size of the buffer that will receive the trimmed string.

szSrc char * Pointer to a character string to be trimmed.

szHex char *

iThreadID Int For single threaded applications always specify 0 to indicate
the main thread of a program.

2.4.1.2 Returns

The GetUNiqueID function returns a BOOL TRUE if the function succeeded and FALSE if not.

The xtoi function returns an integer value of the hexadecimal string passed to the function.

2.4.1.3 Constraints

None noted.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 21 of 70

2.4.1.4 Usage

The populateUNID and GetUNIDString functions are complementary, the first takes a character string
containing a hexadecimal encoded UNID and will populate the UNID structure with the value. The second
reverses the transformation, taking a UNID structure and converting it to a hexadecimal encoded string in
either a decorated or undecorated format.

The xtoi function converts a string containing hexadecimal characters into an integer.

The TrimToUpper_s function will trim a character string, removing leading and trailing whitespace it will
also fold all characters in the string to uppercase.

The RemoveEscapes function removes % characters from character strings, the function is used to make
sure that messages that are destined for the Domino Console do not contain printf escape characters as
these will cause errors in the console logging API.

The GenUnique function is a C API wrapper for the @Unique formula function.

2.4.2 Memory Functions
MEMHANDLE getDominoMemory(DWORD dwSize, int iThreadID)

MEMHANDLE resizeDominoMemory(MEMHANDLE hMem, DWORD dwSize, int iThreadID)

2.4.2.1 Parameters

Name Type Use

dwSize DWORD The size of a requested memory allocation or re-allocation.

hMem MEMHANDLE The handle of en existing memory allocation that is to re-
allocated with a different size.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program.

2.4.2.2 Returns

Both functions return a MEMHANDLE handle to the area of memory that has been allocated or re-
allocated. The functions return NULLHANDLE if the function could not be completed.

2.4.2.3 Usage

The GetDominoMemory function allocates a new chunk of memory that is managed by Domino, the
memory allocation is shared across all domino processes. The resizeDominoMemory function will change
the size of an existing memory allocation.

2.4.3 Comparison Functions
BOOL IsThisADatabase(char *szFileSpec)

BOOL IsThisAReplicaID(char *szFileName, char *szFRID)

BOOL MatchesPattern(const char *szString, const char *szPattern)

BOOL MatchesPatterni(const char *szString, const char *szPattern)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 22 of 70

2.4.3.1 Parameters

Name Type Use

szFileSpec char * Pointer to a null terminated character string containing an
arbitrary file name.

szFileName char * Pointer to a null terminated character string containing an
arbitrary file name.

szFRID char * Pointer to a buffer that will receive a normally formatted
replica ID.

szString char * Pointer to a null terminated arbitrary character string.

szPattern char * Pointer to a null terminated arbitrary character string that can
contain wildcard characters.

2.4.3.2 Returns

The IsThisADatabase function will return TRUE if the passed arbitrary file name conforms to the naming
for a Notes Database, otherwise it will return FALSE.

The IsThisAReplicaID function will return TRUE if the passed arbitrary file name conforms to one of the
allowed Replica ID patterns, the function will also populate a buffer passed by the caller with the Replica
ID in standard format. The function returns false if the passed string is not a replica ID.

The MatchesPattern will return TRUE if the first parameter matches the wildcard string pattern passed as
the second parameter, otherwise it returns FALSE.

The MatchesPatterni function performs the same match as the MatchesPattern function except that the
match is case insensitive.

2.4.3.3 Usage

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 23 of 70

3. Multi-Threaded Run Time API Reference
This section contains the API specifications for all public members and functions that are exposed by the
Multi-Threaded (MT) run time kernel object of the Domino eXplorer. As the MTExecutive class extends
the Single Threaded run time class (ExecEnvironment) all of the public functions from that class are
available in the multi-threaded run time.

Header File: DXCommon/MTX/MTExecutive.h

3.1 Object Constructor

MTExecutive(RunSettings *rsIn, int argc, char *argv[])

MTExecutive(RunSettings *rsIn, ThreadManagerPolicy *tmpIn, int argc, char *argv[])

3.1.1 Parameters

Name Type Use

rsIn RunSettings * A pointer to a validated RunSettings object, or more usually an
object of a class that extends the RunSettings class.
The RunSettings class contains configuration data that
determines how the Run Time is initialized.
See “Supporting Objects” for more details.

Argc Int Count of parameters passed to the main entry point of the
application.

Argv char * [] Pointers to the individual parameters passed to the main entry
point of the application

tmpIn ThreadManagerPolicy
*

A pointer to a valid ThreadManagerPolicy object. The
ThreadManagerPolicy class is used to determine several
aspects of the behavior of the MT kernel. See “Supporting
Classes” for more details.

3.1.2 Returns

A pointer to the initialized MTExecutive object.

3.1.3 Constraints

None.

3.1.4 Usage

Creating a new Run Time object in your application will initialize the run time environment, including the
underlying Notes/Domino run time. If a Repository Database is specified then this will be made available
to the application and, according to the current settings logging will be initiated in the Repository. A pool
of worker threads will also be initialized for use by the application. If no ThreadManagerPolicy is provided
during construction then the run time will be initialized with a default policy in effect. Refer to the section
“Threading Model” for more details of how the multi-threading works in the MT run time.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 24 of 70

3.2 Asynchronous Execution Functions

The following functions are used to send requests for execution in parallel and retrieve completed
requests.

3.2.1 PostARequest Function

BOOL PostARequest(int iFlags, void *pOwner, void *pExecutor, void *pParms, UINT Attrs,

int iPriority, int iThreadID)

3.2.1.1 Parameters

Name Type Use

iFlags int An integer that contains a set of bit flags that determine how
the passed request will be handled. Flags may be

PXR_WAITIF_BUSY - If specified then the call is blocking and

will wait until the request can be posted, otherwise it will return a
failure if the request cannot be posted at the time of the call.

PXR_APP_WAIT – If the call is blocking then this flag will

determine how the wait is performed, if specified then the DX
kernel AppWait function is used to sleep if not specified then the
appropriate OS function is used to wait.

pOwner void * An arbitrary address that identifies the “Owner” of the current
request, the owner address is used when polling for completed
requests. This will often be set to the address of a higher level
request.

pExecutor void * The address of an object that implements the “Runnable”
interface, this is the object that contains the code that is
capable of executing the request.

pParms void * The address of an arbitrary object that contains the parameter
data for the request.

Attrs UINT A set of bit flags that indicate a profile of the current request,
the characteristics defined by these flags are used to determine
how the request will be dispatched. The flags may be a valid
combination of the RQATTR_XXX symbolic values, see below.

iPriority int The relative base priority of this request, a higher value
represents a higher priority and will affect the dispatch
sequence of requests.

iThreadID int The identity of the thread that is posting this request, specify 0
if this is the main thread of the application.

The RQATTR_XXX symbolic values can be valid combinations of the following symbolic values, refer to
the “Threading Model” for more details of how these attributes affect the operation of the core thread
management functions.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 25 of 70

 RQATTR_FIREANDFORGET – If set then no polling will be done for completion of this request.

NOTE: the caller is responsilbe for disposing of the parameter data object for this request after it
has been processed.

 RQATTR_REJOIN – This setting is the opposite of “FIRE AND FORGET”, the application will

issue polling requests to retrieve this request once it has been completed.
 RQATTR_PRODUCER – This setting indicates that when this request is executed then it will

generate more requests (in moderate numbers).
 RQATTR_MEGAPRODUCER – This setting indicates that when this request is executed then it

will generate more requests (in large numbers).
 RQATTR_SERVICE – This setting indicates that the request will run as a service i.e. it will be

long running, usually for the duration of the application execution and will only terminate as the
result of an external signal or condition.

 RQATTR_CMLSL0 – If Constrained Multi Lane Scheduling is active then this request is for Lane

0 (Service Requests).
 RQATTR_CMLSL1 – If Constrained Multi Lane Scheduling is active then this request is for Lane

1 (Scavenger/Feeder Requests).
 RQATTR_CMLSL2 – If Constrained Multi Lane Scheduling is active then this request is for Lane

2 (Unit Of Work Requests).
 RQATTR_CMLSL3 – If Constrained Multi Lane Scheduling is active then this request is for Lane

3+ (Sub-Task Requests).

3.2.1.2 Returns

The function will return FALSE if either the parameters were invalid or the request could not be posted at
this time and the call is in non-blocking mode (see the iFlags parameter). The function will return TRUE if
the request was posted. Once the call has returned TRUE the kernel can be polled for completion.

3.2.1.3 Constraints

None.

3.2.1.4 Usage

Calls to PostARequest should be interspersed with calls to check for the completion of requests that have
already been processed. The threading kernel has finite resources available for queuing requests for
execution and storing requests after they have completed if these resources become exhausted then
calls may block indefinitely.

3.2.2 GetRejoinRequest Function

int GetRejoinRequest(void *pOwner, void **pParms, int iThreadID)

3.2.2.1 Parameters

Name Type Use

pOwner void * An arbitrary address that identifies the “Owner” of any
requests that will be checked for completion.

pParms void ** The address of a pointer where the address of any parameter
data objects will be returned for completed requests.

iThreadID int The identity of the thread that is posting this request, specify 0
if this is the main thread of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 26 of 70

3.2.2.2 Returns

The function will return an integer containing one of the following symbolic values.

 RJR_RETURNED – A completed request has been found for the specified owner, the ponter value

is valid and may be used.

 RJR_NONE_READY – There were no completed requests for the specified owner, however, there

are one or more requests waiting to be executed or currently executing.

 RJR_NONE_EXIST - There were no completed requests for the specified owner, and there are

no requests waiting to be executed or currently executing.

3.2.2.3 Constraints

Calls to retrieve completed requests can be quite heavy and affect system throughput if over used. Use
the IsRejoinRecommended function to determine if a GetRejoinRequest should be issued.

3.2.2.4 Usage

In a loop that is posting many requests there should be an inner loop that retrieves completed requests,
this would normally loop while the GetRejoinRequest returns RJR_RETURNED. Once the posting loop
has completed all of the requests should be drained from the request pools this would normally be done
by looping until the GetRejoinRequest function returns RJR_NONE_EXIST. If the function returns
RJR_NONE_READY in this loop then the loop should wait for an interval of time before polling again. Any
information returned in completed requests can be accumulated, failed requests can be re-driven or
appropriate error actions taken, the parameter data objects returned should of course be destroyed in
these rejoin loops to prevent heap exhaustion.

The design pattern suggested above can, of course, be replaced by other designs determined by a
particular applications needs and architecture. The application must take care however to avoid the
exhaustion of the request handling resources by polling for completed requests at appropriate points in
the application.

3.2.3 IsRejoinRecommended Function

BOOL IsRejoinRecommended(void *pOwner, int iThreadID)

3.2.3.1 Parameters

Name Type Use

pOwner void * An arbitrary address that identifies the “Owner” of any
requests that will be checked for completion.

iThreadID int The identity of the thread that is making this call, specify 0 if
this is the main thread of the application.

3.2.3.2 Returns

The function returns TRUE if the kernel has determined that it is appropriate for an application to poll for
completed requests otherwise it returns FALSE.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 27 of 70

3.2.3.3 Usage

Calls to retrieve completed requests can be quite heavy and affect system throughput if over used. Use
the IsRejoinRecommended function to determine if a GetRejoinRequest should be issued. So prior to
entering a loop to retrieve completed requests the application should use this function to determine if it is
appropriate to do so at this time. The following pseudo-code illustrates the suggested usage.

if (IsRejoinRecommended(…))

while (GetRejoinRequest(…) == RJR_RETURNED)

 {

 Process returned request.

}

End if

3.3 Constrained Multi Lane Scheduling Functions

If Constrained Multi Lane Scheduling (CMLS) is active then the following functions provide additional
capabilities for asynchronous request execution. Refer to the section “Threading Model” for more details
of CMLS.

3.3.1 GetThreadCount Function

int GetThreadCount(void)

3.3.1.1 Returns

The function returns an integer value specifying the number of threads currently being used in the Thread
Pool for executing asynchronous requests.

3.3.1.2 Usage

Refer to the section on the “Threading Model” for a discussion on the use of this function.

3.3.2 GetCMLSRecommendation Function

int GetCMLSRecommendation(int iLevel, int iThreadID)

3.3.2.1 Parameters

Name Type Use

iLevel int The CMLS Lane or level values use one of the RQATTR_CMLSXX
symbolic values.

iThreadID int The identity of the thread that is making this call, specify 0 if
this is the main thread of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 28 of 70

 RQATTR_CMLSL0 – If Constrained Multi Lane Scheduling is active then this request is for Lane

0 (Service Requests).
 RQATTR_CMLSL1 – If Constrained Multi Lane Scheduling is active then this request is for Lane

1 (Scavenger/Feeder Requests).
 RQATTR_CMLSL2 – If Constrained Multi Lane Scheduling is active then this request is for Lane

2 (Unit Of Work Requests).
 RQATTR_CMLSL3 – If Constrained Multi Lane Scheduling is active then this request is for Lane

3+ (Sub-Task Requests).

3.3.2.2 Returns

The GetCMLSRecommendation function will return an integer value the meaning of the value is given by
the following symbolic values.

 CMLS_LANE_FULL – The requested CMLS lane is full, if an attempt is made to post a request for

execution in this lane then the call will block until the congestion reduces.

 CMLS_LANE_AVAILABLE – There are resources available to post a request for execution in the

specified lane. If a request is posted for this lane then it will be queued for execution.

 CMLS_LANE_AVAILABLE_NOW - There are resources available to post a request for execution in

the specified lane. If a request is posted for this lane then it will be executed immediately.

3.3.2.3 Usage

Refer to the section on the “Threading Model” for a discussion on the use of this function.

3.4 Lightweight Thread Synchronisation Functions

The following functions provide the capability of synchronising processing between multiple threads.
Refer to the section on the “Threading Model” for a discussion on why the “Lightweight” synchronisation
functions are provided and how they can fail.

3.4.1 AcquireAppMutex Function

BOOL AcquireAppMutex(int iMutexID, int iThreadID)

3.4.1.1 Parameters

Name Type Use

iMutexID int An integer value that identifies the mutex that the caller wants
control of. The values are specified with the APP_MUTEXT_1
through APP_MUTEX_10 symbolic values.

iThreadID int The identity of the thread that is making this call, specify 0 if
this is the main thread of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 29 of 70

3.4.1.2 Returns

The function returns TRUE if the specified mutex is now controlled by the thread making the call and
returns FALSE if another thread currently controls that mutex and the wait timeout limit has expired while
waiting to gain control.

3.4.1.3 Usage

The application can use this function in a while loop to implement an infinite wait for the mutex to become
free. Applications must free the mutex after the need to have exclusive control of the resource it
represents is over, use the FreeAppMutex function to free the mutex.

3.4.2 FreeAppMutex Function

BOOL FreeAppMutex(int iMutexID, int iThreadID)

3.4.2.1 Parameters

Name Type Use

iMutexID int An integer value that identifies the mutex that the caller wants
control of. The values are specified with the APP_MUTEXT_1
through APP_MUTEX_10 symbolic values.

iThreadID int The identity of the thread that is making this call, specify 0 if
this is the main thread of the application.

3.4.2.2 Returns

The function returns TRUE if the specified mutex is now free to be acquired by other threads. It returns
FALSE if there was an internal (Should Not Occur) failure that prevented release of the mutex.

3.4.2.3 Usage

Applications must free the mutex after the need to have exclusive control of the resource it represents is
over, use the FreeAppMutex function to free the mutex.

3.5 Thread Local Support Functions

The following functions provide mapping functions to map global resources to local resources that may
only be used by a particular thread. The function group currently only support Notes Database Handles
and O/S file handles.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 30 of 70

3.5.1 GetMappedDBH Function

DBHANDLE GetMappedDBH(DBHANDLE hdbNative, int iThreadID)

3.5.1.1 Parameters

Name Type Use

hdbNative DBHANDLE The DBHANDLE of an open database (returned by the first open
call) that is to be mapped into the current thread.

iThreadID int The identity of the thread that is making this call, specify 0 if
this is the main thread of the application.

3.5.1.2 Returns

The function will return a DBHANDLE that can be used by the current thread to access the database. The
call will return NULLHANDLE if the call cannot be completed for instance if the native handle that was
passed to the call is no longer open.

3.5.1.3 Usage

This call should be used in situations where a Notes Database is opened and will then be accessed by
multiple requests that are being processed in multiple threads. The Notes API maintains locks at the
Database Handle that only allow access from the same thread that opened the database, any attempt to
access the database from another thread will result in a bad return code from the Notes API call. The first
thread that opens a database should store the DBHANDLE returned and pass this in any sub-task
requests that need to access the database. Processing of the sub-task requests should always use the
mapped (i.e. thread local) DBHANDLE that is returned by calls to this function.

When the top level request has finished using the identified database it should make a call to the
InvalidateNativeDBH function to signal to the kernel that any mapped (i.e. thread local) database handles
can now be released. This should be done before closing the native database handle.

NOTE: For code compatibility the call can be used in a single threaded application, in this mode the call
just returns the native DBHANDLE that is passed in the call.

3.5.2 InvalidateNativeDBH Function

BOOL InvalidateNativeDBH(DBHANDLE hdbNative, int iThreadID)

3.5.2.1 Parameters

Name Type Use

hdbNative DBHANDLE The DBHANDLE of an open database (returned by the first open
call) that is to be identified as no longer in use by the thread
local mapping functions.

iThreadID int The identity of the thread that is making this call, specify 0 if
this is the main thread of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 31 of 70

3.5.2.2 Returns

The function returns TRUE if the DBHANDLE is now treated as no longer in use, it returns FALSE if theee
call could not be completed.

3.5.2.3 Usage

When the top level request has finished using the identified database it should make a call to the
InvalidateNativeDBH function to signal to the kernel that any mapped (i.e. thread local) database handles
can now be released. This should be done before closing the native database handle.

NOTE: For code compatibility the call can be used in a single threaded application, in this mode the call
does nothing.

3.6 Miscellaneous Functions

The following function provide additional support for multi-threaded applications.

3.6.1 ShowThreadStats Function

void ShowThreadStats()

3.6.1.1 Usage

A call to this function will cause detailed thread level statistics to be written to the application log.

3.6.2 AttachCommandHandler Function

void AttachCommandHandler(CommandHandler *chApp)

3.6.2.1 Parameters

Name Type Use

chApp CommandHandler * A pointer to a valid CommandHandler object. Pass NULL to
detach the currently attached command handler.

3.6.2.2 Usage

Applications that are to be run as server add-in tasks will typically create a command handler by
extending the DX CommandHandler class. Applications then use the AttachCommandHandler function to
make the command handler active allowing it to asynchronously read commands from the application
message queue (MQ) and respond to those commands with the appropriate actions. During application
shutdown the code sequence should identify the point where MQ commands will no longer be processed
and at that point they should deactivate the current command handler by making an
AttachCommandHandler call passing NULL as the address of the command handler.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 32 of 70

4. APIPackages Class
This class is constructed by the runtime and is used to translate a Notes API status code into a codified
readable form. Applications will not normally access functions in this class directly instead they will use
the GetAPIMessage() function in the runtime to obtain a standardised text line for any Notes API error
code that is to be displayed or logged.

Header File: DXCommon/APIPackages.h

4.1 Object Constructor

APIPackages(void)

4.2 Status Code Translation Functions

The following functions are used to convert a STATUS code returned from a Notes API call into a
readable format.

4.2.1 GetPackageID Function

void GetPackageID(STATUS stAPIRC, char *szPkgID, int iMaxLen)

4.2.1.1 Parameters

Name Type Use

stAPIRC STATUS The Notes API return code that is to be translated into a
readable format.

szPkgID char * A pointer to a character buffer where the readable form of the
status code will be returned.

iMaxLen int The size of the buffer where the readable form of the status
code will be returned.

4.2.1.2 Usage

The call returns a readable string that contains the status code in the same format that it is found in the
Notes API error string include files i.e. PKG_<package name>+<error number>.

For example.

A call to the function passing a status code of 0x0103 will return an package identifier of “PKG_OS+3”.

#define ERR_NOEXIST PKG_OS+3

 errortext(ERR_NOEXIST, "File does not exist")

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 33 of 70

Applications will not normally access this function instead they will call the GetAPIMessage() function in
the run time this returns a fully decorated message containing all of the information about the status code
including the error text.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 34 of 70

5. CommandHandler Class
An object of the CommandHandler class or more usually a class that extends it is constructed by the
application and activated through a call to the runtime. The class provides default handling of the
Message Queue (MQ) for Server Add-In tasks. Extending classes can implement additional commands
and/or override, modify or extend the processing associated with the default command set.

Header File: DXCommon/MTX/CommandHandler.h

5.1 Object Constructor

CommandHandler(void)

CommandHandler(ExecEnvironment *xeParent, int iThreadID)

5.1.1 Parameters

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

5.1.2 Returns

The constructor returns a pointer to the newly created CommandHandler object.

5.2 Handle Commands Function

void HandleCommands(int iThreadID)

5.2.1 Parameters

Name Type Use

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

5.2.2 Usage

The handle commands function should be invoked regularly to check for the presence of commands on
the Message Queue (MQ). Applications so not usually perform this task directly, instead they call the
AttachCommandHandle function in the run time this delegates the regular calling of this function to the
multi-threading kernel.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 35 of 70

5.3 ParseCustomCommand Interface

WORD virtual ParseCustomCommand(char *szCommand, char *szOptions, int iThreadID)

5.3.1 Parameters

Name Type Use

szCommand char * A pointer to a null terminated string containing a command
returned from the Message Queue (MQ).

szOptions char * A pointer to a character buffer where any command options
should be returned.

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

5.3.2 Returns

Any inheriting class that implements the interface should return a WORD containing a value that encodes
for the command or the symbolic value MQ_COMMAND_INVALID if the command was not recognised by
the custom handler. Any custom commands should be assigned unique values that start with
MQ_COMMAND_USER+1 and upwards.

5.3.3 Usage

If the interface returns MQ_COMMAND_INVALID then the invalid command is reported to the console
and the log and then ignored by the command handler. If the interface encodes a valid command value
then that value and any command options that were detected are passed to the
CustomCommandHandler interface for execution.

5.4 CustomCommandHandler Interface

WORD virtual CustomCommandHandler(WORD wCommand, char *szOptions, int iThreadID)

5.4.1 Parameters

Name Type Use

wCommand WORD The encoded value of the command that is to be executed.

szOptions char * A pointer to a character buffer where any command options
that were present on the command line will be passed.

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

5.4.2 Returns

Any inheriting class that implements the interface should return MQ_COMMAND_NULL if the passed
command was executed and no further commands are to be executed. If the interface does not perform

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 36 of 70

any processing then it should return the value of the encoded command that was passed. After executing
a command the interface can return the encoded value of any arbitrary command, in this case it can also
set any command options in the buffer that was passed to the interface.

5.4.3 Usage

All commands including commands that are handled by default by the base command handler are passed
to this interface allowing inheriting classes to modify the behaviour of behaviour of any system commands
(see below) in addition to implementing additional commands. To override the processing provided by a
system command the interface should detect the encoded system command perform the processing
required and then return MQ_COMMAND_NULL. To extend a system command by performing additional
processing the interface should detect the command and then perform the additional processing and
return the original passed command encoding.

5.4.4 System Commands

The following system commands are implemented by the base command handler.

5.4.4.1 Quit – MQ_COMMAND_QUIT

The quit command is not normally used, however, during a server shutdown the server issues this
command on all message queues. An application will respond to the command by shutting down.

5.4.4.2 Stop [now] – MQ_COMMAND_STOP

The stop command is used to shut down an application in an orderly manner. Any transactions that are
currently running will be completed, no new transactions are dispatched and the Server Add-In will shut
down. Specifying the optional “now” parameter on the stop command causes an application to fail any
transactions that are currently running and then shut down in an orderly manner.

5.4.4.3 Abort – MQ_COMMAND_ABORT

The abort command is an alias for the “stop now” command.

5.4.4.4 Suspend – MQ_COMMAND_SUSPEND

The suspend command tells an application to stop executing new transactions from the ready queue. Any
transactions that are currently executing are completed, the Add-In task continues to run but will not
process any transactions until the “resume” command is executed.

5.4.4.5 Resume – MQ_COMMAND_RESUME

The resume command is the antithesis of the suspend command. The command only has any effect if the
Add-In task is in the suspended state, then it causes the processor to resume processing transactions
from the ready queue.

5.4.4.6 Verbose – MQ_COMMAND_VERBOSE

The verbose command causes the logging mode of the processor to be switched to verbose mode, in this
mode more detailed logging is made to the application log.

5.4.4.7 Loud – MQ_COMMAND_LOUD

The loud command is an alias for the verbose command.

5.4.4.8 Terse – MQ_COMMAND_TERSE

The terse command switches the logging mode of the processor back to normal mode, in this mode
minimal logging is done to the application log.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 37 of 70

5.4.4.9 Quiet – MQ_COMMAND_QUIET

The quiet command is an alias for the terse command.

5.4.4.10 Echo [on|off] – MQ_COMMAND_ECHO

The echo command without any parameters is the same as the “echo on” command it will cause all
current application logging to be echoed to the Domino Server console and therefore the Domino log. The
“echo off” command turns off the echo of application logging.

5.4.4.11 Noecho – MQ_COMMAND_NOECHO

The noecho command is an alias for “echo off”.

5.4.4.12 Trace [nnn] – MQ_COMMAND_TRACE

The trace command sets the processor logging functions into trace mode. The number on the command
designates a particular are of function to be traced. Refer to the DXGlobals.h header file for the different
trace area specifications.

This command should only be used for problem diagnosis.

In this mode very detailed logging is produced in the application log.

5.4.4.13 Debug [nnn] – MQ_COMMAND_DEBUG

The debug command sets the processor logging functions into debug mode. The number on the
command designates a particular are of function to be traced. Refer to the DXGlobals.h header file for the
different trace area specifications.

This command should only be used for problem diagnosis.

In this mode even more detailed logging is produced in the application log.

5.4.4.14 Refresh – MQ_COMMAND_REFRESH

The refresh command causes the an application processor to finish processing any transactions that are
currently processing and then reset the processing environment to the default configuration and resume
processing transactions.

5.4.4.15 Status – MQ_COMMAND_STATUS

The status command causes the processor to display the current state of the processor and some
volumetric information about how many transactions have been processed.

Sample output:

01/06/2011 14:17:11 CET: DXR0907I: Command received: status. [500]

01/06/2011 14:17:11 CET: QCP0201I: 1 transaction have been dispatched, 0

completed, 1 are running, max concurrency is 1. [500]

01/06/2011 14:17:11 CET: QCP0208I: Transactions marked Completed: 0, Error:

0, Retried: 0, Delayed: 0. [500]

5.4.4.16 Stats [thread|debug] – MQ_COMMAND_STATS

The stats command causes a number of current values of statistics from the DXCommon kernel to be
written to the applications log. The thread parameter on the command adds certain additional “per thread”
statistics to be output. The debug operand on the command causes the “per thread” statistics to be
included along with more details. Understanding these statistics is beyond the scope of this document,
refer to the documents about the architecture of the DXCommon kernel to gain insight into the meaning of
these statistics.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 38 of 70

5.4.4.17 Panic [message] – MQ_COMMAND_PANIC

The panic command will trigger an NSD exception from within the processor. This is an extreme
diagnostic aid as it will cause an NSD of the entire server. The optional message is recorded in the log
and in the memory displayed in the NSD dump.

5.4.5 System Commands for Debug Builds

The following additional commands are implemented in debug builds of an application.

NOTE: The application must set the address of the debug Helper object in the command handler for
these commands to be available.

5.4.5.1 Memory – MQ_COMMAND_MEMORY

The memory command shows a report on current memory usage by the application, these statistics are
reported to the server console and the application log.

5.4.5.2 Dump – MQ_COMMAND_DUMP

The dump command causes the processor to generate a Windows Core Minidump of the application. The
application continues to execute so the command can be issued a number of times during an execution of
the application. The contents of the dump can be investigated using the standard Windows debugging
tools (e..g. windbg).

5.5 GetAutoCommand Interface

WORD virtual GetAutoCommand(char *szOptions, int iThreadID)

5.5.1 Parameters

Name Type Use

szOptions char * A pointer to a character buffer where any command options
will be passed.

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

5.5.2 Returns

Any inheriting class that implements the interface should return a WORD containing a value that encodes
for the command. Any custom commands should be assigned unique values that start with
MQ_COMMAND_USER+1 and upwards.

5.5.3 Usage

This interface is called periodically to determine if a command should be “injected” into the command
stream as if it had been entered through the console as a Tell command. The interface can be used to
introduce simulated console commands on a timed basis or in response to other events from within the
application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 39 of 70

5.6 State Member

int State

5.6.1 Usage

The State member of the command handler is used to publish the current state of the object to
implementing applications. Applications are expected to monitor the State member and respond to
changes in the state with appropriate behaviour, the monitoring of the command handler state is normally
done within the main routine of a server add-in task. The member consists of a number of bit flags that
can be combined to show a particular state, the following symbolic values are used to interrogate the
state.

 CH_STATE_QUIT – A “quit” signal has been detected by the command handler, applications
should respond by shutting down immediately in response to this signal.

 CH_STATE_STOP – A “stop” command has been received from the command stream,
applications should shut down in an orderly manner in response to this signal. Normally
applications would be expected to finish processing any transactions that are currently running
and then perform a controlled shutdown. Applications should not initiate the processing of any
new transactions after detecting the stop signal.

 CH_STATE_ABORT – An “abort” or “stop now” command has been received from the command
stream, applications should shut down as quickly as possible in a controlled manner. Any running
transactions should be failed but clean-up processing may be executed.

 CH_STATE_SUSPEND – A “suspend” command has been received from the command stream,
applications should respond by inhibiting the initiation of any new transactions until this signal is
revoked (by issuing a “resume” command). Applications should continue to monitor the state to
see if the signal is revoked or one of the shut down signals is asserted.

 CH_STATE_REFRESH – A “refresh” command has been received from the command stream,
applications should perform whatever processing is needed to load or re-instate the current
execution configuration and then clear the signal. This mechanism allows applications to be
dynamically reconfigured in response to configuration changes without the need to shut down
and restart the applications.

 CH_STATE_TERMINAL – The other state bits set are now regarded as permanent they will not
change and applications should respond appropriately to the other state signals present.

 CH_STATE_INVALID – The command handler has detected an internal or external condition that
implies that the command handler has become invalid and cannot be relied on to signal other
states. Applications detecting this signal should shut down with appropriate error messages.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 40 of 70

6. TransactionHandler Class

This class must be extended to provide a default implementation for handling the reading, dispatch and
status recording for a queue of transactions. A transaction handler object and the associated transaction
queue would be created by the application and then dispatched for asynchronous execution. Once
dispatched the object will monitor the associated transaction queue and respond by dispatching any
transactions that appear in the queue. The handler recognises a structured set of sub-queues that allow
for the automated retry of failed transactions and the repeated execution of transaction on a fixed
schedule.

Header File: DXCommon/MTX/CommandHandler.h

6.1 Object Constructor

TransactionHandler(void)

TransactionHandler(MTExecutive *xeParent, int iThreadID)

6.1.1 Parameters

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

6.1.2 Returns

The constructor returns a pointer to the newly created TransactionHandler object.

6.2 ProcessQueue Function

void ProcessQueue(TransactionQueue *tqNew, int iThreadID)

6.2.1 Parameters

Name Type Use

tqNew TransactionQueue * Pointer to a valid TransactionQueue object that describes the
queue to be processed by the handle.

iThreadID int Specify the number of the thread that is making the call. Specify
0 for the main thread of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 41 of 70

6.2.2 Usage

This function is not normally used by applications it will synchronously process transactions in the defined
transaction queue and will block until a state change is signalled to the queue telling it to stop. In normal
usage the processing of a transaction queue is done asynchronously this is accomplished by posting a
transaction queue object to be executed by a transaction handler. Refer to the section on “supporting
objects” for details of the TransactionQueue Class.

6.3 MarshallTransaction Interface

int virtual MarshallTransaction(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, void **txObject, void **xxObject, UINT *Attrs, int *Priority, int

iThreadID)

6.3.1 Parameters

Name Type Use

nidTX NOTEID The NoteID of the document that will be marshalled into an
object containing the transaction information.

hnTX NOTEHANDLE Handle of the transaction document that is to be marshalled
into an object containing the transaction information.

tqCurrent TransactionQueue * A pointer to the TransactionQueue object that represents the
queue from which the transaction was loaded.

txObject void ** A pointer to a variable in which the interface will place the
address of the object created to contain the transaction
information.

xxObject void ** A pointer to a variable where the interface will place the
address of the object that will be used to execute the
transaction.

Attrs UINT * The address of a variable where the interface will set any
asynchronous posting attributes for this transaction. Refer to
the RQATTR_XXXX symbolic definitions for possible values.

Priority int * The address of an integer variable where the interface will set
the initial priority for asynchronous posting of the transaction.

iThreadID int Specify the number of the thread that is making the call. Specify
0 for the main thread of the application.

6.3.2 Returns

The interface must return an integer value that indicates what should be done with the transaction. The
following symbolic values are defined to determine the processing disposition.

 TX_DISPOSITION_NORMAL – The transaction should be executed and the transaction

document should be arked as “In Progress”.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 42 of 70

 TX_DISPOSITION_ERROR – Do not execute the transaction instead flag the transaction

document as an “Error”, the path of processing depends on the error retry configuration of the
transaction and transaction queue.

 TX_DISPOSITION_DELAY - Do not excute the transaction move it to the delayed transaction

queue for later execution.

 TX_DISPOSITION_PANIC – Do not execute the transaction mark the transaction document as

an “Error” and prevent any further processing of the transaction queue.

6.3.3 Usage

This interface is used to convert a transaction from the serialised on-disk form into the in-memory object
that will be processed.

The “Delay” mechanism has a number of possible uses from restricting particular transactions to
executing during particular time windows to checking the usage levels on a server that is a target of a
transaction and delaying it if the server is too busy at the present time.

Transactions that are managed by the Transaction Handler mechanisms must be capable of
asynchronous execution.

6.4 SerializeTransaction Interface

void virtual SerializeTransaction(void *txObject, DBHANDLE hdbQueue, TransactionQueue

*tqCurrent, int iThreadID)

6.4.1 Parameters

Name Type Use

txObject void * A pointer to the object containing the transaction information.

hdbQueue DBHANDLE The handle of the database that is associated with the passed
transaction queue.

tqCurrent TransactionQueue * A pointer to the TransactionQueue object that represents the
queue from which the transaction was loaded.

iThreadID int Specify the number of the thread that is making the call. Specify
0 for the main thread of the application.

6.4.2 Usage

Inheriting classes must implement this interface. As a minimum implementation it must update the
document for the transaction with an appropriate status code and destroy (delete) the passed transaction
object. Usual implementation will also write processing details, for example statistics and logs, to the
transaction document.

For changing the status of transactions there are a standard set of functions that can be used or
overridden.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 43 of 70

6.5 Status Update Functions

void virtual MarkTransactionDelayed(NOTEID nidTX, NOTEHANDLE hnTX, BOOL bInProgress,

TransactionQueue *tqCurrent, int iThreadID)

void virtual MarkTransactionReady(NOTEID nidTX, NOTEHANDLE hnTX, BOOL bInProgress,

TransactionQueue *tqCurrent, int iThreadID)

void virtual MarkTransactionError(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

void virtual MarkTransactionInProgress(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

void virtual MarkTransactionCompleted(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

void virtual MarkTransactionRetried(NOTEID nidTX, NOTEHANDLE hnTX, TransactionQueue

*tqCurrent, int iThreadID)

6.5.1 Parameters

Name Type Use

nidTX NOTEID The NoteID of the document that will be marshalled into an
object containing the transaction information.

hnTX NOTEHANDLE Handle of the transaction document that is to be marshalled
into an object containing the transaction information.

bInProgress BOOL A flag if the value is TRUE then the transaction came from the
“In Progress” (currently executing queue).

tqCurrent TransactionQueue * A pointer to the TransactionQueue object that represents the
queue from which the transaction was loaded.

iThreadID int Specify the number of the thread that is making the call. Specify
0 for the main thread of the application.

6.5.2 Usage

There are is a default implementation for each of the status update functions.

6.5.3 Transaction Queue Life Cycle

The following describes the normal transaction life cycles managed by the transaction handler.

Transactions may be marked for once-off execution at a particular point in time or for repeated execution
at particular time intervals. These transactions have a status value of “SCHEDULED” and reside on the
Schedule Queue. When the execution time is reached or the scheduled interval expires then these
transactions are copied to the Ready Queue.

The Ready Queue is the queue monitored by the transaction handle to find work that is ready to be
executed. These transactions have a status value of “NEW”. When transactions are marshalled for
execution they are moved to the In Progress Queue. If the transaction should not be processed at the
current time, for whatever reason then it is marked with a status value of “DELAYED” and moved to the
Delayed Queue.

Transactions on the In Progress Queue are considered to be currently executing and have a status value
of “INPROGRESS”.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 44 of 70

Once a transaction has completed processing it will be passed to the SerializeTransaction interface to
determine the disposition and move it to the appropriate queue. If the transaction completed successfully
it will be stamped with a status value of “COMPLETED” and moved to the Completed Queue. If the
transaction failed then the destination is determined by the transaction retry settings for the current queue
and transaction. If the transaction can be retried and the retry limit has not been exhausted then a new
copy of the transaction is marked with the “DELAYED” status value and moved to the Delayed Queue,
the original transaction is stamped with the “RETRIED” status value and moved to the Delayed Queue for
later execution. If the transaction has failed and does not support retries or the retry limit has been
exhausted then it will be marked with the “ERROR” status value and moved to the Error Queue.

The Delayed Queue is scanned occasionally and if a transaction has been on that queue for long enough
then it is marked with the “NEW” status value and returned to the Ready Queue.

When a transaction handler starts to process a queue then, depending on settings, it may scan the In
Progress Queue and process any transactions as if they had failed.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 45 of 70

7. ElapsedTimer Class
Objects of the ElapsedTime class provide a standard means of establishing elapsed (i.e. wall clock) time
between events.

The class provides a getElapsed() method that returns a clock_t value containing the number of elapsed
“ticks” since the object was created. A “tick” is platform dependent, the CLOCKS_PER_SEC defined
symbol provides the number of “ticks” in a second on the target platform.

For longer intervals the class provides the getElapsedMillis() method that returns a clock_t value
containing the number of elapsed milliseconds since the object was created.

The runtime provides a default ElapsedTimer object that is created during initialisation of the runtime, this
object can be accessed through the “RunningTime” member of the runtime object.

Header File: DXCommon/ElapsedTimer.h

7.1 Object Constructor

ElapsedTimer(void)

7.1.1 Returns

A pointer to the newly constructed ElapsedTimer object.

7.2 getElapsed Function

clock_t getElapsed(void)

7.2.1 Returns

A clock_t containing the number of elapsed clock “ticks” since the object was created. A “tick” is platform
dependent, the CLOCKS_PER_SEC defined symbol provides the number of “ticks” in a second on the
target platform.

7.2.2 Usage

The number of CLOCKS_PER_SEC can be large on some platforms so this function should only be used
for measuring shorter elapsed intervals, up to 10 minutes, for longer intervals use the getElapsedMillis
function. Typical usage is to record the elapsed time at the start of an interval and again at the end of an
interval and then subtract the first measurement from the second to determine the duration of the interval
in ticks, divide the result by CLOCKS_PER_SEC to convert the result to seconds or by
CLOCKS_PER_SEC/1000 to convert the result to milliseconds.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 46 of 70

7.3 getElapsedMillis Function

clock_t getElapsedMillis(void)

7.3.1 Returns

A clock_t containing the number of elapsed milliseconds since the object was created.

7.3.2 Usage

Typical usage is to record the elapsed time at the start of an interval and again at the end of an interval
and then subtract the first measurement from the second to determine the duration of the interval in ticks,
divide the result by 1000 to convert to seconds.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 47 of 70

8. Runnable Class
The Runnable abstract class defines an interface for any class that is to be dispatchable by the multi-
threaded runtime.

Header File: DXCommon/MTX/Runnable.h

8.1 Object Constructor

Runnable(void)

8.2 ExecuteThisRequest Interface

void virtual ExecuteThisRequest(void * pReqObject, int iThreadID)

8.2.1 Parameters

Name Type Use

pReqObject void * A pointer to the object containing the transaction information.

iThreadID int The identiy of the thread that is being invoked with this
request.

8.2.2 Usage

Implementing classes should cast the passed request object to the correct type and then vector the call to
the appropriate function according to the content of the request.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 48 of 70

9. Debugging Classes

9.1 Helper Class

This class is only implemented for Windows Platforms and only exposes functionality in Debug
builds.

The Helper class is used to establish an object that provides additional diagnostic capabilities to the
runtime environment. Objects of this class should only be constructed in DEBUG build configurations of
an application.

The class provides services for monitoring application memory usage and producing Core Dumps on
demand.

Header File: DXCommon/Debug/Helper.h

9.1.1 Object Constructor

Helper(ExecEnvironment *xeParent, int iThreadID)

9.1.1.1 Parameters

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

9.1.1.2 Returns

A pointer to the newly created Helper object.

9.1.2 ReportMemoryUsage Function

void ReportMemoryUsage(BOOL bReset, int iThreadID)

void ReportMemoryUsage(BOOL bReset, BOOL bEcho, int iThreadID)

9.1.2.1 Parameters

Name Type Use

bReset BOOL Set to TRUE to cause the initial values of the memory statistics
to be reset to the current values (after they are reported). Set
to FALSE to continue reporting against the initial values
recorded when the object was constructed.

bEcho BOOL A switch when TRUE then the report is echoed to the console.

iThreadID int Specify the number of the thread that is creating the object.
Specify 0 for the main thread of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 49 of 70

9.1.2.2 Usage

Calls to the ReportMemoryUsage generate a report in the current log and optionally on the console of the
current allocation of memory by the application, the call also reports on the difference in memory
allocation since last reported and since the Helper was created.

The functions report on the memory usage by the application in the C runtime heap.

Sample Output:

Current(3) Working Set size: 30704 Kb, +328 Kb since last measured, +4580 Kb since first measured, Peak: 30704 Kb.

Current(3) Paged Pool use: 1252 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 1252 Kb.

Current(3) Non-Paged Pool use: 10 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 10 Kb.

Current(3) Normal Objects on the Heap: 28 , 0 since last measured, +7 since first measured, Peak: 28.

Current(3) Normal Objects Allocation: 124 Kb, 0 Kb since last measured, +2 Kb since first measured, Peak: 124 Kb.

Current(3) Client Objects on the Heap: 0 , 0 since last measured, 0 since first measured, Peak: 0.

Current(3) Client Objects Allocation: 0 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 0 Kb.

The report indicates the sequence number of memory reports “Current(3)” indicates the third time that the
reporting method has been called. Each line of output references a different memory statistic and shows
the current, delta since last reported, delta since first reported and the peak measurement of the
particular statistic. The statistics of particular focus for programmers are the count and size of “Normal
Objects” on the heap, steady increases in these values would indicate a leak of C++ objects from within
the application.

It should be noted that Debug compilations of DX applications also enables the C runtime memory leak
tracing protocols. At any point in a program a call can be made to the C Runtime “CheckMemoryLeaks()”
method and this will report on each object that is allocated on the Heap giving the source file and line
number where it was allocated as well as the size of the object. A call to CheckMemoryLeaks should be
made immediately before an application terminates this will show any objects that remain allocated and
provides an excellent means of detecting and fixing leaks caused by failing to delete C++ objects or
failing to free memory allocations.

9.1.3 CreateMemoryDump Function

void CreateMemoryDump(int iThreadID)

9.1.3.1 Parameters

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is making the call.

9.1.3.2 Usage

The CreateMemoryDump function can be called at any point in an application to create a “minidump” file
of the application process including heap memory. The memory dump files are created in the
“IBM_TECHNICAL_SUPPORT” sub-directory in the Notes data directory. The minidump files can be
loaded into Visual Studio for contextual analysis or in the Windows Debugger (WinDbg).

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 50 of 70

The dump files are created with a standard name format:

DXDump-<appname>YYYYMMDD-HHMMSS.dmp.

Where <appname> is the name of the application and YYYYMMDD-HHMMSS is the timestamp that the
dump was created.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 51 of 70

10. Non-Exposed Classes
The following classes do not expose any functionality directly to applications.

10.1 ThreadDispatcher Class

A singleton object of this class forms part of the multi-threaded runtime system, it has the responsibility
for dispatching units of work that are ready to be executed into an available worker thread.

Header File: DXCommon/Threads/threadDispatcher.h

10.2 ThreadManager Class

A singleton object of this class provides the master component of the multi-threaded runtime system .

Header File: DXCommon/Threads/threadManager.h

10.3 ThreadManagerPolicy Class

An object of this class contains information used by the thread manager to configure the multi-threaded
runtime system. An application can configure an object of this class and use it in the creation of the
runtime system to influence many settings and constraints that are used by the runtime system.

Header File: DXCommon/Threads/ThreadmanagerPolicy.h

10.4 ThreadMonitor Class

A singleton object of this class forms part of the multi-threaded runtime system, it has the responsibility
for monitoring several aspects of the multi-threaded runtime system this includes such housekeeping
actions as writing log entries.

Header File: DXCommon/Threads/threadMonitor.h

10.5 ThreadScheduler Class

A singleton object of this class forms part of the multi-threaded runtime system, it has the responsibility
for maintaining the relative priority of units of work that are waiting to be executed.

Header File: DXCommon/Threads/threadScheduler.h

10.6 WorkerThread Class

This class provides objects that manage the execution of units of work in a single thread.

Header File: DXCommon/Threads/WorkerThread.h

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 52 of 70

11. Supporting Classes
The following classes are used to create data objects that communicate information between the
application and the DX kernel components.

11.1 RunSettings Class

An object of the RunSettings abstract class or more usually a class that extends the RunSettings class is
used to contain application and run specific information that conditions the configuration of the runtime
and the application. Static application wide configuration data is set in the object along with parameters
passed on the command line, these are then used to control the configuration of the runtime and the
application.

For example the name, version and short description of the application are used at various places in the
runtime, these are accessed through the RunSettings object that is used to initialise the runtime. The
runtime also has a special database called the “Repository” (this database is optional for the runtime) it
can be used for different purposes such as the destination for persistent logging. Typically the server and
file name for the repository would be supplied as command line parameters and then set in the
RunSettings object, if set the repository database will be opened during initialisation of the runtime.

The setting of the members in the RunSettings class is the responsibility of the implementing class.

Header File: DXCommon/RunSettings.h

11.1.1 Object Constructor

RunSettings(void)

RunSettings(int argc, char * argv[])

11.1.1.1 Parameters

Name Type Use

argc int The count of arguments that were passed to the main entry
point of the program.

argv char * [] The array of parameters that were passed to the main entry
point of the application.

11.1.1.2 Implementation Pattern

Inheriting classes should implement the following pattern for the constructor to ensure correct interfacing
with the run time.

// Constructor

if (SetDefaults()) // Set the runtime defaults

{

 IsValid = ValidateParameters(argc, argv); // Validate and capture the

parameters

}

if (IsValid)

{

 if (LogLevel > LOGLEVEL_NORMAL)

 {

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 53 of 70

 // Show the current parameter settings

 ShowSettings();

 }

}

11.1.2 SetDefaults Interface

BOOL virtual SetDefaults(void)

11.1.2.1 Returns

The implementation should return TRUE if the defaults were set correctly otherwise return FALSE.

11.1.2.2 Usage

The SetDefaults interface must be implemented in the inheriting class. The defined method should be
invoked in the constructor of the implementing class. The implementation should ensure that all default
member values are set in both the base class and the inheriting class.

11.1.3 ValidateParameters Interface

BOOL virtual ValidateParameters(int argc, char* argv[])

11.1.3.1 Parameters

Name Type Use

Argc int The count of arguments that were passed to the main entry
point of the program.

Argv char * [] The array of parameters that were passed to the main entry
point of the application.

11.1.3.2 Usage

The ValidateParameters interface must be implemented in the inheriting class. The defined method
should be invoked in the constructor of the implementing class. The implementation should ensure that all
default member values are set in both the base class and the inheriting class from any parameters
supplied on the command line.

11.1.4 ShowUsage Interface

void virtual ShowUsage(void)

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 54 of 70

11.1.4.1 Usage

The ShowUsage interface should be implemented in inheriting classes. The implementation should
display messages on the standard output device (STDOUT) to show the correct usage of the application.

11.1.5 ShowSettings Interface

void virtual ShowSettings(void)

11.1.5.1 Usage

The ShowUsage interface should be implemented in inheriting classes. The implementation should
display messages on the standard output device (STDOUT) to show the current settings that are in effect
for this run of the application.

11.1.6 AllowExecution Member

BOOL AllowExecution

Set this member to TRUE if the application should be allowed to continue execution, otherwise set the
value to FALSE. This member should be checked in the main routine of the invoking application to
determine if it is safe to continue program execution with the current settings in effect.

11.1.7 IsValid Member

BOOL IsValid

Set this value to TRUE by default and set it to FALSE in the event of any failure to parse any of the
current application run parameters.

11.1.8 EchoLog Member

BOOL EchoLog

Set this member to TRUE if all logging messages are to be echoed to the console and set FALSE if not. If
the application is running on a server then messages will be echoed to the Domino Server Console, if
running on a workstation then messages are echoed to the command window from which the application
was invoked.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 55 of 70

11.1.9 NoRepository Member

BOOL NoRepository

Set this member to TRUE to prevent the kernel from using a repository database, otherwise set it to
TRUE. The repository database is used by the kernel as a default destination for logging and a default
source for transactions. The opening and closing of the repository database, if used, is intrinsic to the
kernel. Applications can obtain a handle to the repository database for their own purposes.

11.1.10 NoAppLog Member

BOOL NoAppLog

Set this member to TRUE to prevent the kernel from writing log messages to a permanent log destination.
Messages will still be echoed to the console. Set the value to FALSE for normal logging behaviour.

11.1.11 CreateRepository Member

BOOL CreateRepository

Set this member to TRUE if the kernel should create the repository database as a blank database if it
does not already exist, logging will then be directed to this database. Set the value to FALSE then run
time initialisation will fail if the repository database is to be used but it does not exist.

11.1.12 RunningAsAddin Member

BOOL RunningAsAddin

Set this member to TRUE if the application is to run as an Add-In Task on a Domino Server. Set the value
to FALSE if the application will not run as an Add-In. Applications that are marked as not running as an
Add-In can still be executed on a domino server.

11.1.13 NeedsMQ Member

BOOL NeedsMQ

Set this value to TRUE if the application expects to use a Message Queue (MQ) for commands, set it to
FALSE if no Message Queue is required.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 56 of 70

11.1.14 AllowMultipleAddins Member

BOOL AllowMultipleAddins

Set this value to TRUE if multiple copies of this Server Add-In Task are allowed to be run on the same
server at the same time. This setting instructs the kernel to create unique Message Queue names for
each instance of the Add-In. The Message Queue names are constructed from the application name and
a number is appended starting from 1 that is the lowest queue name available on the server. Set the
value to FALSE if only a single instance is permitted, in this case the Message Queue name is just the
application name and if the name is already in use then kernel initialisation will fail.

11.1.15 LogLevel Member

int LogLevel

Set this member to the logging level required for this run of the application. The following symbolic values
can be set for the logging level.

 LOGLEVEL_NORMAL – This is the default logging level. At this level errors and exceptions will
be written to the log but comparatively few informational messages will be written.

 LOGLEVEL_VERBOSE – At this logging level many more informational messages are written to
the application log.

 LOGLEVEL_TRACE – At this logging level additional diagnostic trace messages are written to
the application log.

 LOGLEVEL_DEBUG – At this logging level all informational and trace messages are written in
addition debugging dumps of certain data object will be written to the application log.

11.1.16 TraceArea Member

int TraceArea

If the logging level has been set to TRACE or DEBUG level then this member can be set to restrict the
functional areas of the kernel that will write additional messages to the application log. The additional
messages from the kernel at these higher logging levels can be very numerous so it is useful to be able to
target a specific area of the kernel for debugging. If this value is set to zero then all areas of the kernel will
generate the additional messages. The following symbolic values can be used to target specific areas of
kernel functionality.

 TRACE_ALL – to trace all areas of the kernel.

 TRACE_CORERT – to trace the core areas of the run time.

 TRACE_MT – to trace kernel areas that specifically support multi-threading.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 57 of 70

 TRACE_MTD – to trace the kernel thread dispatcher functional area.

 TRACE_MRQ – to trace the interface between the application and the multi-threading kernel.

 TRACE_EXPLORER – to trace the Domino eXplorer.

 TRACE_CMLS – to trace the Constrained Multi Lane Scheduling functions.

 TRACE_TXH – to trace the functioning of the Transaction Handler.

 TRACE_RESOURCELOADER – to trace the functioning of the Resource Loader.

 TRACE_ACLRSPARSER – to trace the parsing of ACL Rule Sets.

 TRACE_ACLRULESET – to trace the operation of ACL Rule Sets.

 TRACE_DBC – to trace functioning of the Database Copier.

 TRACE_DM – to trace the functioning of the Design Manager

 TRACE_DBM – to trace the functioning of the Database Mover.

 TRACE_DBSCAN – to trace the functioning of the Database Note Scanner.

 TRACE_DBPMOD – to trace the operation of the Database Property Modifier.

 TRACE_NER – to trace the operation of the Named Entity Resolver.

 TRACE_APP – This value is reserved for applications to implement their own additional
diagnostic tracing.

11.1.17 szRepServer Member

char szRepServer[MAX_SERVER + 1]

If a repository database will be used then set this member to a null terminated string containing the
abbreviated name of the server on which the repository database will be found. Set that value to an
empty string or the value “Local” if the repository database is on the same server or workstation where
the application is executing.

11.1.18 szRepDb Member

char szRepDb[MAX_DATABASE + 1]

If a repository database will be used then set this member to a null terminated character string containing
the path of the repository database relative to the Notes Data Directory.

11.1.19 APPName Member

char APPName[MAXAPPNAME + 1]

Set this member to the name of the application.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 58 of 70

11.1.20 APPTitle Member

char APPTitle[MAXAPPTITLE + 1]

Set this member to a short title for the application.

11.1.21 APPVer Member

char APPVer[MAXAPPVERSION + 1]

Set this member to the version of the application, it is suggested to differentiate between different build
configurations of the application.

11.2 ThreadManagerPolicy Class

An object of this class contains information used by the thread manager to configure the multi-threaded
runtime system. An application can configure an object of this class and use it in the creation of the
runtime system to influence many settings and constraints that are used by the runtime system. Only
members that should be set by the application are described here, other members of the class are
intended for internal use by the kernel. For a more detailed description of the use of the members of this
class refer to the section on the “Threading Model” later in this document.

Header File: DXCommon/Threads/ThreadManagerPolicy.h

11.2.1 Object Constructor

ThreadManagerPolicy(void)

11.2.1.1 Returns

A pointer to the newly created ThreadManagerPolicy object.

11.2.2 TPSchedMode Member

UINT TPSchedMode

This member determines the request scheduling mode that is to be employed by the kernel. Set the
member to one of the following symbolic values according to the application model.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 59 of 70

 TPOOL_MODE_USLS – This sets the scheduling mode to Unconstrained Single Lane
Scheduling which treats the Thread Pool as a single resource where any request can be
executed by any thread.

 TPOOL_MODE_CMLS – This sets the scheduling mode to Constrained Multi Lane Scheduling.
This mode reserves a number of members of the Thread Pool for executing particular types of
request.

11.2.3 TPoolPolicy Member

UINT TPoolPolicy

This member enables policy options for the thread scheduler. Set this member to the symbolic value
TPOOL_POLICY_PRESTARTTARGET.

11.2.4 PriorityPolicy Member

UINT PriorityPolicy

This member determines policy options for managing the relative prioritisation of requests by the Thread
Scheduler. Use the following symbolic values to determine the options in effect.

 PRIO_POLICY_AGERQS – If this setting is in effect then requests that are waiting to be
executed will be examined periodically and their priority will be incremented each time.

 PRIO_POLICY_PREFBOOST – If this (and the above) setting are in effect then requests that are
waiting to be executed will be examined periodically and their priority will be increased (boosted)
by a value determined by a policy setting.

11.2.5 TargetThreads Member

int TargetThreads

This member determines the number of threads that will be used in the Thread Pool. Set the MaxThreads
and MinThreads members to the same value. A minimum value of 10 threads is suggested.

11.2.6 PendingRQECapacity Member

int PendingRQECapacity

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 60 of 70

This member determines the size (number of requests) of the “Pending Requests” Pool, this pool stores
requests that are waiting to be executed. A suggested value for this is 20 * Number of Threads.

11.2.7 RejoinRQECapacity Member

int RejoinRQECapacity

This member determines the size (number of requests) of the “Rejoin Requests” Pool, this pool stores
completed requests that are waiting to be polled by the application. A suggested value for this is 20 *
Number of Threads.

11.2.8 AsyLogPoolEntries Member

int AsyLogPoolEntries

This member determines the size (number of log messages) that can be stored waiting to be written. The
appropriate setting for this member will vary according to how much logging is generated by the
application and the logging level that is in effect. A suggested value for this setting is 200.

11.2.9 MaxPctL0Threads Member

int MaxPctL0Threads

If the scheduling mode is set to “Constrained Multi Lane Scheduling” then this member determines the
maximum percentage of threads in the thread pool that can be used by Lane 0 (service requests).

11.2.10 MaxPctL1Threads Member

int MaxPctL1Threads

If the scheduling mode is set to “Constrained Multi Lane Scheduling” then this member determines the
maximum percentage of threads in the thread pool that can be used by Lane 1 (feeder requests).

11.2.11 MaxPctL2Threads Member

int MaxPctL2Threads

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 61 of 70

If the scheduling mode is set to “Constrained Multi Lane Scheduling” then this member determines the
maximum percentage of threads in the thread pool that can be used by Lane 2 (unit transaction
requests).

It is suggested that sum of L0, L1 and L2 threads in the pool does not exceed 50%.

11.3 TransactionQueue Class

This class provides information that is used by the TransactionHandler to bind to the physical
implementation of a transaction queue and determine a number of operational characteristics of the
queue.

Header File: DXCommon/MTX/TransactionQueue.h

11.3.1 Object Constructor

TransactionQueue(void)

11.3.1.1 Returns

A pointer to the newly created TransactionQueue object.

11.3.2 wQueueProtocols Member

WORD wQueueProtocols

This member determines how the transaction handle will manage this queue. The value consists of a
number of bit flags, use the following symbolic values to set the required settings.

 QPFLAG_REQUEIP_STARTUP – If this flag is set then when the transaction queue is started then

any transactions that are on the “In Progress” queue will be requeued for execution.

 QPFLAG_REQUEIP_READY – If this flag is set then any “In Progress” transactions that are

requeued during startup will be moved to the “Ready” queue for immediate execution. If the flag
is not set then requeued transactions will be moved to the “Delayed” queue for later execution.

 QPFLAG_REQUE_DELAY – If this flag is set then the “Delayed” queue will be monitored for

transactions and they will be requeued, how they are requeued is determined by the following two
flag settings.

 QPFLAG_DELAY_IDLE – If this flag is set then whenever the “Ready” queue is empty the

“Delayed” queue will be checked for any transactions that can be requeued.

 QPFLAG_DELAY_CYCLE – If this flag is set then after every n transactions are processed a

check will be made of the “Delayed” queue to detect transactions that can now be requeued.

 QPFLAG_MONITOR_SCHED – If this flag is set then the “Schedule” queue will be checked for any

transactions that should be executed on a timed basis.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 62 of 70

To set the values for default processing configuration use the QPFLAG_DEFAULT value that will set the

QPFLAG_REQUEIP_STARTUP, QPFLAG_REQUE_DELAY and QPFLAG_DELAY_IDLE flags.

11.3.3 MaxConcurrent Member

int MaxConcurrent

This member determines how many transactions are allowed to be executing concurrently.

11.3.4 MaxRunLimit Member

DWORD MaxRunLimit

This member determines the maximum number of transactions that can be run from this queue, once the
limit is reached the queue will automatically shut down.

11.3.5 hdbQueue Member

DBHANDLE hdbQueue

This member can optionally be set to the database handle for the queue database, if the handle is not set
then the transaction handler will use the server name and database path to open the queue database.

11.3.6 MinDelay Member

int MinDelay

This member holds the minimum length of time in seconds that a transaction must remain on the
“Delayed” queue before it is eligible to be re-queued.

11.3.7 ReQTXCycle Member

int ReQTXCycle

This member contains the number of transaction to process before checking the “Delayed” queue.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 63 of 70

11.3.8 MaxReqCount Member

int MaxReqCount

This member contains the maximum number of “Delayed” transactions that will be re-queued in any
cycle.

11.3.9 DelayCycleSecs Member

int DelayCycleSecs

This member contains the number of seconds between regular inspections of the “Delayed” queue.

11.3.10 LocalPermit Member

BOOL LocalPermit

This member is the permit that allows the transaction handler to continue processing this queue. The
application should set this value to TRUE before starting to process this queue and should set the value
to FALSE when the transaction handler should shut down processing this queue.

11.3.11 QueueIsSuspended Member

BOOL QueueIsSuspended

Set this value to TRUE to temporarily suspend processing of transactions from this queue. Set the value
back to FALSE when transaction processing can resume on this queue.

11.3.12 szQueueName Member

char szQName[MAX_ELEMENT + 1]

This member should be set to a null terminated character string providing the logical name of this
transaction queue.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 64 of 70

11.3.13 szQServer Member

char szQServer[MAX_SERVER + 1]

If a database handle is not supplied for the transaction queue, this member should be set to a null
terminated character string containing the abbreviated name of the server on which the transaction queue
database resides. Set the value to an empty string or the value “Local” if the transaction queue database
is on the same server or workstation where the application is running.

11.3.14 szQDbPath Member

char szQDbPath[MAX_DATABASE + 1]

If a database handle is not supplied for the transaction queue, this member should be set to a null
terminated character string containing the path of the transaction queue database relative to the Notes
Data Directory.

11.3.15 szReadyQName Member

char szReadyQName[MAX_ELEMENT + 1]

Set this member to a null terminated character string containing the view name of the “Ready” queue in
the transaction database. This member has a default value of “NewTransactions”.

11.3.16 szInProgressQName Member

char szInProgressQName[MAX_ELEMENT + 1]

Set this member to a null terminated character string containing the view name of the “In Progress” queue
in the transaction database. This member has a default value of “InProgressTransactions”.

11.3.17 szDelayedQName Member

char szDelayedQName[MAX_ELEMENT + 1]

Set this member to a null terminated character string containing the view name of the “Delayed” queue in
the transaction database. This member has a default value of “DelayedTransactions”.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 65 of 70

11.3.18 szSchedQName Member

char szSchedQName[MAX_ELEMENT + 1]

Set this member to a null terminated character string containing the view name of the “Scheduled” queue
in the transaction database. This member has a default value of “ScheduledTransactions”.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 66 of 70

12. Threading Model
This section of the document presents the key aspects of the threading model that a developer using the
API should be familiar with.

12.1 Introduction

The DX threading model has been designed to present application developers with a simple architecture
that is easy to design for and an API that is simple to use. The application interface is based on a
message passing interface (MPI). Applications create request objects that describe some work that must
be performed asynchronously and post these request to the kernel for execution. The kernel manages a
pool of threads, the threads in the pool are homogeneous and can execute any request. The kernel will
dispatch requests for execution by one of the worker threads in the thread pool. Once a request has
completed the state change can be detected in the application code by a polling mechanism that is
invoked through the API.

12.2 The Request Lifecycle

Application Code

Runnable Object

API

API

Ready Pool

Rejoin Pool

Worker
Threads

1 2

3

4

5

6
7

8

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 67 of 70

The application creates a request object and populates with the information needed to execute a chunk of
work. The application the calls the “PostARequest” function in the run time API, passing the address of
the request object and the address of the “Runnable” object that is to execute the request.

The run time API takes the information passed by the application code in the “PostARequest” call and
stores it in the “Ready Pool” where it is available to be executed.

The kernel code monitors the pool of worker threads and as soon as one is available to run work it will
locate the most appropriate request that is waiting in the “Ready Pool” and will dispatch it to the available
worker thread for execution.

The worker thread will invoke the “ExecuteThisRequest” interface on the Runnable object to have the
application code service the request. The application code will indicate the success or otherwise and
return any needed information in the request object that was passed to it.

When processing of the request is completed the application code returns to the Worker Thread.

The Worker Thread stores the information in the “Rejoin Pool” and signals the kernel that it is available for
processing work again.

The application code calls the “GetRejoinRequest” function in the run time API to poll the “Rejoin Pool” to
see if request have completed processing.

If a request has been completed then the API will return the address of the completed request object. The
application code then processes any returned information and disposes of the returned request object.

1

2

3

4

5

6

7

8

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 68 of 70

12.3 The Request Owner

Calls to the “PostARequest” and “GetRejoinRequest” functions in the run time API take a parameter of
“Request Owner” this parameter is an arbitrary address encoded as a void pointer (void *). This
parameter provides a mechanism for grouping bunches of requests together and localising the code that
will process these grouped requests.

The kind of processing that the DX kernel was designed for often breaks down into a hierarchic pattern
for parallel execution, one request will generate a number of sub-requests and each sub-request will, in
turn, create a number of sub-sub-requests and so on. The owner mechanism can be used here to reflect
the hierarchic workload, in this case the Owner for each request is set to the address of the parent
request in the hierarchy. When polling for completed requests using the “GetRejoinRequest” the address
of a parent request is specified as the owner and the return will signal when every sub-request that
belongs to that parent has completed and therefore the parent processing can be completed.

12.4 Request Priority

Calls to the “PostARequest” functions in the run time accept a parameter that specifies the “Priority” of the
request. The priority is specified as an arbitrary integer value with larger numbers being a higher (more
urgent) priority. The priority is used by the kernel to determine which of the requests available in the
“Ready Pool” will be the next to be dispatched to an available thread.

As a general rule workloads that follow the hierarchic model described in the section above should post
requests at higher priorities the lower they are in the hierarchy.

The kernel also implements an optional, request priority ageing mechanism. When ageing is in effect then
requests that reside in the “Ready Pool” have their priority increased at regular intervals. This mechanism
is intended to prevent requests becoming stale while waiting to be executed and tying up resources while
not contributing to throughput rates.

12.5 Constrained Multi Lane Scheduling

As pointed out in the earlier sections the kernel treats all worker threads as equals, any request can be
dispatched to any worker thread that is available to process work. When a single request is being
processed by a worker thread all processing for that request must be completed before the thread
becomes available to process other requests, including the execution and rejoin processing of any sub-
requests that are posted. There is a fundamental exposure from this model, it is possible for all threads to
fill up with “higher level” requests leaving no worker threads available to execute the lower level requests
that have been posted. In this scenario processing will simply grind to a halt with all worker threads
waiting for sub-requests to complete, which they never will, or waiting for space to become available in
the “Ready Pool” so that more sub-requests can be posted.

The kernel solves this thread exhaustion problem by providing a different scheduling mode “Constrained
Multi Lane Scheduling” (CMLS). The CMLS mode is selected by setting the TPOOL_MODE_CMLS bit in
the TPSchedMode member of the ThreadMnagerPolicy object that is used to configure the multi-
threading kernel.

When running in CMLS mode the kernel still regards all worker threads as being equal and able to
execute any request however it limits (constrains) the number of threads that can be concurrently
executing requests from different levels in the workload hierarchy. CMLS identifies four arbitrary levels of
request hierarchy. Level or Lane 0 defines service requests these requests would normally be running for
the duration of the application. Level or Lane 1 defines requests that will themselves generate any
number of what the application would recognise as unit transactions, these are referred to as feeder
transactions. Level or Lane 2 defines unit transactions and Level or Lane 3 defines sub-requests or
requests that will perform the work of a part of a transaction. The Level or Lane for an individual request
is identified to the kernel by setting the appropriate bits in the Attributes flag that is passed in the call to
“PostARequest”.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 69 of 70

Constraints may be applied as a percentage of the threads in the thread pool that can be executing
requests from levels 0, 1 and 2. These constraints are applied by setting the appropriate members in the
ThreadManagerPolicy that used to initialise the kernel. The constraints not only apply to the worker
threads but also to the number of requests in that level that can be in the “Ready Pool” at any point in
time. The protocols for the CMLS implementation allow a worker thread or a “Ready Pool” entry to be
used from the requests level or from a resource that is available from any higher level.

 Supposing that there is an application that will execute with 10 worker threads in the thread pool and 100
entries in the “Ready Pool”, the application has configured the CMLS limits as Lane 0 is set to 0% (i.e. we
will not be executing any of these requests, Lane 1 is set to 20% and Lane 2 is also set to 20%. In this
example there could be a maximum of 20 Lane 1 requests in the ready queue at any point in time and
there could be a maximum of 2 Lane 1 requests executing concurrently. There could also be a maximum
of 40 Lane 2 requests in the “Ready Pool” at any point in time, assuming that there were no Lane 1
requests in the pool at that time and there could be a maximum of 4 Lane 2 requests executing
concurrently, also assuming that no Lane 1 requests were executing at that time. Lane 3 requests are
always unconstrained and can occupy all of the available slots in the “Ready Pool” and can be
concurrently executing requests in every thread in the thread pool.

It should be noted that the priority mechanisms described in the previous section remain in effect when
the CMLS scheduling mode is engaged.

The original analogy used in the design of the CMLS facility was to view the worker threads as separate
lanes on a motorway and to view the different Levels as vehicle types with 0 being large articulated
lorries, 1 being lorries, 2 being vans and 3 being cars and motorbikes. Signals above the motorway
restrict vehicle types to only using assigned lanes. When entering the motorway, if the assigned lanes for
your vehicle type are full then you have to wait. The analogy can still be useful but does introduce some
false assumptions about how CMLS works. The main failing is that threads are not assigned to handle
particular CMLS levels, individual threads can be used for any request but CMLS will prevent the total
current work profile from exceeding any of the prescribed constraints.

12.6 The Design of Runnable Classes

Although there are no real constraints imposed by the kernel for the design of Runnable objects apart
from the fact that they need to inherit from the “Runnable” class and implement the “ExecuteThisRequest”
interface, there are a few simple guidelines that should be followed to ensure a successful
implementation pattern.

There should never be a need to instantiate more than a single instance of any runnable class, no matter
how many threads are being run in the thread pool. Some developers assume that there is some kind of
affinity between the Runnable object and a particular thread in the pool, this is not the case there is no
such affinity.

Any variable data used in processing a request should only be held in either local automatic storage or in
“Transaction Storage” i.e. members in the request object. These variables should NEVER be stored in
members in the Runnable object. The selection of Automatic or Transaction is determined by the lifecycle
of the data in the variable. If the data is to be used across multiple asynchronous request dispatches then
the variable should be stored in Transaction storage, if the data is only to be used for the processing of a
single request then it is probably more appropriate to use Automatic storage.

The kernel does not have any provision for “Thread Local Storage” i.e. memory that is reserved for use by
a single thread. The kernel does provide API functions for using one resource, database handles, on a
per thread basis. All other Domino resources can be used from multiple threads, compiled formulas can
only be used by one thread at a time but are more appropriately handled in Transaction storage rather
than dedicated to a particular thread or by serialising access to the compiled formula.

Only design implementation aspects that are directly pertinent to using the API are presented here, for
more information on designing and building applications using DX refer to the publication “DX Tools
Application Design Guide”.

Domino eXplorer (DX) Kernel API Reference

Document: DX-KERNEL-API-314 Date: 10/03/2015 15:40
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Kernel API Reference for Version: 3.14.0 Page 70 of 70

12.7 Request Sizing

The DX threading model has been designed to handle large workload tasks with heavy I/O requirements
(network and disk), high memory occupancy and moderate CPU processing, we use the term “Heavy Lift
Computing” (HLC) for these types of workload. The model is absolutely NOT suitable for the
implementation of “High Performance Computing” (HPC) applications.

To ensure that applications fit the “Heavy Lift” paradigm it is important to design the lowest level sub-
requests used in the application so that they do not contain too small a quantum of the total workload.
There are no definitive rules to determine what is the optimal size and characteristics of the lowest level
sub-requests, determining this is a part of the application tuning process. The most successful approach
has been to identity the smallest sensible unit of processing at the lowest level of functional
decomposition and then to make the lowest level sub-request capable of processing a variable number of
these base functional quanta. Tuning of the application consist of changing the number of threads in the
pool and varying the number of base functional quanta in the lowest level sub-requests, alongside
eliminating bottlenecks and resource contention.

The “Database Copier” (DbCopier) engine implements a good method for dealing with the sizing of the
lowest level requests. The functional quantum in the copier is a request to copy a single note from the
source database to the target database, the engine determines a value for how many quanta will be
combined into a sub-request by computation using size of the source database and the number of
documents to be copied. Databases that have many small documents will dispatch sub-requests with
more document copy operations than when copying databases with fewer larger documents. The
Database Copier also implements a mechanism for scaling the copy operations per request count by a
specified factor, this allows for rapid tuning of an implementation.

It has also been noted that if the functional quantum in an application has long wait times associated with
it, such as disk I/O to very slow devices or more usually network I/O over “long fat pipes” then these
benefit, from running more threads with a smaller size of sub-request.

