
ManualManualManualManual

DX Tools

Class Catalogue 3.14

Author: Ian Tree

Owner: HMNL b.v.

Customer: Public

Status: Final

Date: 10/03/2015 16:36

Version: 3.14.0

Disposition: Open Source

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 2 of 81

Document Usage

This is an open source document you may copy and use the document or portions of the document for
any purpose.

Revision History

Date of this revision: 10/03/2015 16:36 Date of next revision None

Revision
Number

Revision
Date

Summary of Changes Changes
marked

0.1 04/02/09 Initial Base Version No

3.12.0 17/04/12 QE Version No

3.14.0 10/03/15 Updated for x64 support No

Acknowlegements

Frontpiece Design was produced by the chaoscope application.

IBM, the IBM Logo, Domino and Notes are registered trademarks of International Business Machines
Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All code and documentation presented is the property of Hadleigh Marshall (Netherlands) b.v. All
references to HMNL are references to Hadleigh Marshall (Netherlands) b.v.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 3 of 81

Contents
1. Introduction to DX Classes ... 6

2. Kernel Classes ... 7

2.1 ExecEnvironment Class .. 7

2.2 MTExecutive Class ... 7

2.3 APIPackages Class... 7

2.4 DXException Class ... 7

2.5 ElapsedTimer Class .. 8

2.6 RunSettings Class... 8

2.7 Helper Class .. 8

2.8 CommandHandler Class ... 9

2.9 TransactionHandler Class ... 9

2.10 TransactionQueue Class ... 9

2.11 Runnable Class ... 9

2.12 ThreadDispatcher Class .. 9

2.13 ThreadManager Class ... 9

2.14 ThreadManagerPolicy Class ... 10

2.15 ThreadMonitor Class ... 10

2.16 ThreadScheduler Class ... 10

2.17 WorkerThread Class ... 10

3. Functional Classes ... 11

3.1 DXACLRuleSetParser Class ... 11

3.1.1 API ... 11

3.1.2 Usage Notes .. 12

3.2 DXACLRuleSet Class ... 12

3.2.1 API ... 12

3.2.2 Usage Notes .. 13

3.3 DbCopier Class ... 14

3.3.1 API ... 14

3.3.2 Usage Notes .. 15

3.4 DbMover Class .. 15

3.4.1 API ... 15

3.4.2 Usage Notes .. 17

3.5 DbModifier Class ... 17

3.5.1 API ... 17

3.5.2 Usage Notes .. 18

3.6 Helper Class .. 18

3.6.1 API ... 19

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 4 of 81

3.6.2 Usage Notes .. 20

3.7 DesignManager Class ... 21

3.7.1 API ... 21

3.7.2 Usage Notes .. 24

3.8 DXResourceLoader Class .. 24

3.8.1 API ... 24

3.8.2 Usage Notes .. 28

3.9 DominoExplorer Class .. 28

3.9.1 API ... 28

3.9.2 Usage Notes .. 29

3.10 DXNoteScanner Class .. 29

3.10.1 API ... 29

3.10.2 Usage Notes .. 30

3.11 ObjectCache Class .. 30

3.11.1 API ... 30

3.11.2 Usage Notes .. 35

3.12 TimeBasedArray Class .. 35

3.12.1 API ... 36

3.12.2 Usage Notes .. 40

3.13 AutoScaleFrequencyAnalyser Class ... 41

3.13.1 API ... 41

3.13.2 Usage Notes .. 43

3.14 NEResolver Class ... 44

3.14.1 API ... 44

3.14.2 Usage Notes .. 51

4. Supporting Classes... 52

4.1 CopyRequest Class .. 52

4.1.1 API ... 52

4.1.2 Usage Notes .. 59

4.2 PartCopyRequest Class .. 59

4.2.1 API ... 59

4.3 MoveRequest Class .. 62

4.3.1 API ... 62

4.3.2 Usage Notes .. 64

4.4 PartMoveRequest Class ... 65

4.4.1 API ... 65

4.4.2 Usage Notes .. 66

4.5 ModRequest Class .. 66

4.5.1 API ... 66

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 5 of 81

4.6 DXACLRule Class ... 70

4.6.1 API ... 70

4.7 DXNoteScanReq Class ... 71

4.7.1 API ... 71

5. Appendixes ... 75

5.1 Appendix A: ACL Rule Set XML ... 75

5.1.1 Sections ... 75

5.1.2 Entries .. 75

5.1.3 Example Rule Sets .. 77

5.2 Appendix B: Virtual Templates .. 80

5.2.1 Structure .. 80

5.2.2 Manifest XML Document ... 80

5.2.3 Design Element DXL Sources ... 81

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 6 of 81

1. Introduction to DX Classes
The Domino eXplorer (DX) was developed as a means for facilitating the rapid development of tools to be
used in projects that involve high volumes of data transformation in Domino databases. DX has been, and
continues to be developed for use across a wide range of Domino versions and platforms. The reference
platforms are Domino 9.0.x on Windows Server 2003 R2 (32 and 64 bit) and Red Hat Linux 6.6. DX is
also used as a research tool to investigate various aspects of Autonomic Systems, in particular
Autonomic Throughput Optimisation.

Standardised utilities have also been built around some of the functional DX classes, these are published
as “DX Tools” and can save time by providing off-the-shelf processing to be incorporated into complex
transformations that need high throughput rates.

DX consists of a set of “Kernel” classes and a collection of “Functional” classes. In this document there is
only a short description of the “Kernel” classes as they are dealt with in other documents. This document
concentrates on the “Functional” classes and how to use them. Classes that do not expose functionality
to applications but are used by the “Functional” classes are documented under the section “Supporting”
classes.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 7 of 81

2. Kernel Classes
This section provides a brief description of the classes that make up the Domino eXplorer kernel.

The kernel classes are used in a DX application to deliver basic functionality and provide an execution
context for the functional classes and custom code.

2.1 ExecEnvironment Class

Header File: DXCommon/ExecEnvironment.h

The ExecEnvironment class is the core of the runtime system for single threaded applications. The class
also provides a large collection of convenience methods and linkage to other objects.

The class is instantiated as a singleton object early in the execution lifecycle of an application. The
singleton object is widely accessed in an application and passed to the constructors of most DX classes.

Construction of the singleton will initialise the Notes/Domino runtime and establish the appropriate run
context for the application providing logging and Message Queues if the application is configured as a
Server Add-In task. The application must provide a RunSettings object, or usually a object of a class that
extends the RunSettings class to the constructor, this object defines the application configuration.

Throughout this document the singleton is referred to as the “runtime object”.

2.2 MTExecutive Class

Header File: DXCommon/MTX/MTExecutive.h

The MTExecutive class extends the ExecEnvironment class to provide multi-threaded support to
applications.

The class is instantiated as a singleton object early in the execution lifecycle of an application. The
singleton object is widely accessed in an application and passed to the constructors of most DX classes.

Construction of the singleton will initialise the Notes/Domino runtime and establish the appropriate run
context for the application providing logging and Message Queues if the application is configured as a
Server Add-In task. The construction of the object will also establish a pool of threads that can be used to
execute asynchronous actions as well as the housekeeping threads that provide the multi-threaded
execution environment. The application must provide a RunSettings object, or usually a object of a class
that extends the RunSettings class to the constructor, this object defines the application configuration.
The application can optionally provide a ThreadManagerPolicy object to the comstructor, this policy object
allows low-level control over the timings and other constraints in the multi-threading kernel.

Throughout this document the singleton is referred to as the “runtime object”.

2.3 APIPackages Class

Header File: DXCommon/APIPackages.h

This class is constructed by the runtime and is used to translate a Notes API status code into a decorated
readable form. Applications will not normally access functions in this class directly instead they will use
the GetAPIMessage() function in the runtime to obtain a standardised text line for any Notes API error
code that is to be displayed or logged.

2.4 DXException Class

Header File: DXCommon/DXException.h

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 8 of 81

The DXException class is used by various parts of the DX runtime to pass exception details from the
point of detection to the exception handling context. This is a standard “Frisbee” class i.e. it is thrown by
the exception detection code and then caught by the appropriate exception handling context.

DX class implementations will never percolate a DXException across the API boundary exposed to an
application, any exception that is detected internally will be handled internally and conerted to an
appropriate application response according to the API contract.

2.5 ElapsedTimer Class

Header File: DXCommon/ElapsedTimer.h

Objects of the ElapsedTimer class provide a standard means of establishing elapsed (i.e. wall clock) time
between events.

The class provides a getElapsed() method that returns a clock_t value containing the number of elapsed
“ticks” since the object was created. A “tick” is platform dependent, the CLOCKS_PER_SEC defined
symbol provides the number of “ticks” in a second on the target platform.

For longer intervals the class provides the getElapsedMillis() method that returns a clock_t value
containing the number of elapsed milliseconds since the object was created.

The runtime provides a default ElapsedTimer object that is created during initialisation of the runtime, this
object can be accessed through the “RunningTime” member of the runtime object.

2.6 RunSettings Class

Header File: DXCommon/RunSettings.h

An object of the RunSettings class or more usually a class that extends the RunSettings class is used to
contain application and run specific information that conditions the configuration of the runtime and the
application. Static application wide configuration data is set in the object along with parameters passed on
the command line, these are then used to control the configuration of the runtime and the application.

As an example the name, version and short description of the application are used at various places in
the runtime, these are accessed through the RunSettings object that is used to initialise the runtime. The
runtime also has a special database called the “Repository” (this database is optional for the runtime) it
can be used for different purposes such as the destination for persistent logging. Typically the server and
file name for the repository would be supplied as command line parameters and then set in the
RunSettings object, if set the repository database will be opened during initialisation of the runtime.

2.7 Helper Class

Header File: DXCommon/Debug/Helper.h

This class is only implemented for Windows Platforms.

The Helper class is used to establish an object that provides additional diagnostic capabilities to the
runtime environment. Objects of this class should only be constructed in DEBUG build configurations of
an application.

The class provides services for monitoring application memory usage and producing Core Dumps on
demand.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 9 of 81

2.8 CommandHandler Class

Header File: DXCommon/MTX/CommandHandler.h

An object of the CommandHandler class or more usually a class that extends it is constructed by the
application and activated through a call to the runtime. The class provides default handling of the
Message Queue (MQ) for Server Add-In tasks. Extending classes can implement additional commands
and/or override, modify or extend the processing associated with the default command set.

2.9 TransactionHandler Class

Header File: DXCommon/MTX/TransactionHandler.h

This class must be extended to provide a default implementation for handling the reading, dispatch and
status recording for a queue of transactions. A transaction handler object and the associated transaction
queue would be created by the application and then dispatched for asynchronous execution. Once
dispatched the object will monitor the associated transaction queue and respond by dispatching any
transactions that appear in the queue. The handler recognises a structured set of sub-queues that allow
for the automated retry of failed transactions and the repeated execution of transaction on a fixed time
based schedule.

2.10 TransactionQueue Class

Header File: DXCommon/MTX/TransactionQueue.h

This class provides information that is used by the TransactionHandler to bind to the physical
implementation of a transaction queue and determine a number of operational characteristics of the
queue.

2.11 Runnable Class

Header File: DXCommon/Threads/Runnable.h

The runnable class defines an interface for any class that is to be asynchronously dispatchable by the
multi-threaded runtime.

2.12 ThreadDispatcher Class

Header File: DXCommon/Threads/ThreadDispatcher.h

A singleton object of this class forms part of the multi-threaded runtime system, it has the responsibility
for dispatching units of work that are ready to be executed into an available worker thread.

2.13 ThreadManager Class

Header File: DXCommon/Threads/ThreadManager.h

A singleton object of this class provides the master component of the multi-threaded runtime system .

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 10 of 81

2.14 ThreadManagerPolicy Class

Header File: DXCommon/Threads/ThreadManagerPolicy.h

An object of this class contains information used by the thread manager to configure the multi-threaded
runtime system. An application can configure an object of this class and use it in the creation of the
runtime system to influence many settings and constraints that are used by the runtime system.

2.15 ThreadMonitor Class

Header File: DXCommon/Threads/ThreadMonitor.h

A singleton object of this class forms part of the multi-threaded runtime system, it has the responsibility
for monitoring several aspects of the multi-threaded runtime system this includes such housekeeping
actions as writing log entries.

2.16 ThreadScheduler Class

Header File: DXCommon/Threads/ThreadScheduler.h

A singleton object of this class forms part of the multi-threaded runtime system, it has the responsibility
for maintaining the relative priority of units of work that are waiting to be executed.

2.17 WorkerThread Class

Header File: DXCommon/Threads/WorkerThread.h

This class provides objects that manage the execution of units of work in a single thread.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 11 of 81

3. Functional Classes

3.1 DXACLRuleSetParser Class

Header File: DXCommon/ACL/DXACLRuleSetParser.h

The DXACLRuleSetParser class is a factory class for DXACLRuleSet objects (see later) that can be used
to manipulate the ACL of databases. The factory class will create an DXACLRuleSet object from an XML
specification document (see Appendix A. for the specification of this document).

3.1.1 API

3.1.1.1 Constructor

DXACLRuleSetParser(ExecEnvironment *xeParent, int iThreadID)

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

NOTE: After construction the address of a DXResourceLoader object must be set in the rlCurrent
member of the object.

3.1.1.2 parseTheseRules

DXACLRuleSet * parseTheseRules(char *szRuleSet, int iThreadID)

DXACLRuleSet * parseTheseRules(NOTEHANDLE hnSource, char *szItemName, int iThreadID)

Name Type Use

szRuleSet char * Pointer to a null terminated string that specifies the location of
the XML document that contains the ACL rules. This string can
be a URL or a file name.

hnSource NOTEHANDLE Handle of a Notes document that contains a field with the XML
specifying the ACL rules.

szItemName char * Pointer to a null terminated string that contains the name of
the field that contains the XML specifying the ACL rules.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

This function will take an XML document containing ACL rules and will return a pointer to the
DXACLRuleSet object constructed from the ACL rules. The function will return NULL if the XML
document could not be found or was non-conforming.

NOTE: The address of a DXResourceLoader object must be set in the rlCurrent member of the object
before these functions are invoked.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 12 of 81

3.1.2 Usage Notes

The DXACLRuleSetParser object is thread safe, multiple threads can make parseTheseRules() function
calls in parallel.

3.2 DXACLRuleSet Class

Header File: DXCommon/ACL/DXACLRuleSet.h

The DXACLRuleSet is a container for a set of ACL rules that are derived from an XML specification
document. Objects of this class can be used to manipulate the ACL of a database so that they conform to
the specification.

3.2.1 API

3.2.1.1 Constructor

DXACLRuleSet(ExecEnvironment *xeParent, int iThreadID)

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

Do not use the constructor for objects of this class use the DXACLRuleSetParser factory class to parse
an XML document containing the ACL rules to construct the set. Use the constructor to create an empty
rule set that will be populated programmatically or by using the clone() method.

3.2.1.2 validate

BOOL validate(int iThreadID)

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

The validate() function is not normally used directly by applications it is invoked by the factory class after
constructing a rule set from an XML document. If used in an application that manipulates the rules in a
rule set after they have been loaded then invoke the validate() function to check the internal consistency
of the rule set. The function returns TRUE if the rule set is internally consistent and FALSE if there is an
inconsistency. If the function returns FALSE messages will be written to the log that indicate the cause of
the inconsistency. Do not invoke any other functions on a rule set object that is in an inconsistent state.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 13 of 81

3.2.1.3 coerce

BOOL coerce(HANDLE hACL, int iThreadID)

Name Type Use

hACL HANDLE Handle of a database ACL that will be changed so that it
conforms to the rules specified by the rule set.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

The coerce method takes the handle to the ACL of a database and forces it to conform to the rules
contained in the rule set. Individual ACL entries will be added, removed or modified as appropriate. The
method returns TRUE if the ACL was modified to make it conform and FALSE if the ACL was already
conformant to the rule set. If the method returns TRUE then the ACL should be saved to make the
changes permanent.

NOTE: The DXACLRuleSet object maintains stateful information during a coerce operation and is
therefore not thread safe.

3.2.1.4 clone

void clone(DXACLRuleSet *arsClone, int iThreadID)

Name Type Use

arsClone DXACLRuleSet * Pointer to an empty rule set object that will contain the cloned
rules.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

The clone() method is used to populate an empty DXACLRuleSet object with the same rules that are
contained within the current DXACLRuleSet object.

The cloning operation is used to produce duplicate rule sets that can be used to modify the ACL of
multiple databases at the same time.

3.2.2 Usage Notes

The coerce() method starts by “binding” the ACLRuleSet to the passed ACL. This process involves
translating Role names into a privilege mask. While analysing the ACL for conformance with the rule set
any adjustments are posted in the rule set object and then applied once the analysis is complete. This
means that it is essential to only use a rule set on a single database at any one time, use the clone()
method to populate a new rule set with the same rules and use the clone to process an additional
database.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 14 of 81

3.3 DbCopier Class

Header File: DXCommon/DBC/DbCopier.h

The DbCopier class provides an engine that copies databases making replica or non-replica copies of a
source database. There are many options that can be applied during the copy operation. The copy
process is optimised for high throughput processing many parts of the copy process in parallel, the class
can only be used in a multi-threaded environment. The class is completely thread safe allowing multiple
copy operations to be carried out in parallel by the same DbCopier object. A copy operation can be
initiated either synchronously or asynchronously.

3.3.1 API

3.3.1.1 Constructor

DbCopier(MTExecutive *xeParent, int iThreadID)

Name Type Use

xeParent MTExecutive * Pointer to the current multi-threaded runtime object

iThreadID int Specify the number of the thread that is creating the object.

3.3.1.2 CopyThisDb

BOOL CopyThisDb(CopyRequest *crRQ, int iThreadID)

Name Type Use

crRQ CopyRequest * Pointer to the CopyRequest object that contains all of the
parameters that control the copy operation.

iThreadID int Specify the number of the thread that is invoking the method.

This method provides a means of synchronously initiating a copy operation on a DbCopier object. The
call is blocking and will wait until the copy operation completes before returning to the caller. The method
returns TRUE if the copy operation was successful and FALSE if the operation failed.

Refer to the “Supporting Classes” section of this document for information about the CopyRequest class
to see the options that are available for the copy operation.

3.3.1.3 Asynchronous Copy Operations

To invoke a copy operation asynchronously on a DbCopier object follow the steps below.

1) Create a CopyRequest object and populate it with the parameters needed for the copy operation.

2) Create a PartCopyRequest object and set the address of the CopyRequest object in the “Parent”
member and set the “CopyAction” member to “COPY_DATABASE”.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 15 of 81

3) Use the “PostARequest” method on the runtime object to dispatch the “PartCopyRequest”
message to the DbCopier.

3.3.1.4 ProxyLogMessage Method

BOOL virtual ProxyLogMessage(CopyRequest *crRQ, char *szMsg, int iThreadID)

Name Type Use

crRQ CopyRequest * Pointer to the CopyRequest object that contains all of the
parameters that control the copy operation.

szMsg char * Pointer to a null terminated character string containing the
message that is being issued by the DbCopier.

iThreadID int The number of the thread that is invoking the method.

The ProxyLogMessage() method can be overridden in inheriting classes to provide access to the
messages that are issued by the DbCopier. Overriding methods should return TRUE if they completed
their processing or FALSE if they encountered an error while trying to process the message.

3.3.2 Usage Notes

Examine the QCopy application to see how the DbCopier is implemented and used in a real
implementation.

3.4 DbMover Class

Header File: DXCommon/DBC/DbMover.h

The DbMover engine was originally developed to solve the problem of redistributing notes databases
across multiple storage volumes without shutting down the Domino server or limiting the use of databases
while they are being moved between storage volumes. Having addressed the problem of storage
redistribution it was noted that the DbMover engine had other capabilities such as creating media
backups and deleting databases already plumbed in and so minor code changes turned it into a more
generic Notes database storage management tool. The name DbMover was retained as storage
redistribution remains the principal use of the utility class.

The DbMover engine recognises three primitive actions that can be combined in different ways to
accomplish different tasks. The primitive actions are Copy (C) which makes an online copy of an open
(transaction logged) database, Delete (D) which deletes a database while it is online and Link (L) which
creates a database link in place of the original database pointing to a new storage location (which can be
outside of scope of the Notes Data Directory).

3.4.1 API

3.4.1.1 Constructor

DbMover(MTExecutive *xeParent, int iThreadID)

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 16 of 81

Name Type Use

xeParent MTExecutive * Pointer to the current multi-threaded runtime object

iThreadID int Specify the number of the thread that is creating the object.

3.4.1.2 MoveThisDb Method

BOOL MoveThisDb(MoveRequest *mrRQ, int iThreadID)

Name Type Use

mrRQ MoveRequest * Pointer to the MoveRequest object that contains all of the
parameters that control the move or other operation.

iThreadID int Specify the number of the thread that is invoking the method.

This method provides a means of synchronously initiating a move or other operation on a DbMover
object. The call is blocking and will wait until the move or other operation completes before returning to
the caller. The method returns TRUE if the move or other operation was successful and FALSE if the
operation failed.

Refer to the “Supporting Classes” section of this document for information about the MoveRequest class
to see the operations and options that are available for the with this call.

3.4.1.3 Asynchronous Mover Operations

To invoke a Mover operation asynchronously on a DbMover object follow the steps below.

1) Create a MoveRequest object and populate it with the parameters needed for the operation.

2) Create a PartMoveRequest object and set the address of the MoveRequest object in the “Parent”
member and set the “MoveAction” member to “MOVE_DATABASE”.

3) Use the “PostARequest” method on the runtime object to dispatch the “PartMoveRequest”
message to the DbMover.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 17 of 81

3.4.1.4 ProxyLogMessage Method

BOOL virtual ProxyLogMessage(MoveRequest *mrRQ, char *szMsg, int iThreadID)

Name Type Use

mrRQ MoveRequest * Pointer to the MoveRequest object that contains all of the
parameters that control the current operation.

szMsg char * Pointer to a null terminated character string containing the
message that is being issued by the DbMover.

iThreadID int The number of the thread that is invoking the method.

The ProxyLogMessage() method can be overridden in inheriting classes to provide access to the
messages that are issued by the DbMover. Overriding methods should return TRUE if they completed
their processing or FALSE if they encountered an error while trying to process the message.

3.4.2 Usage Notes

Examine the QMove application to see how the DbMover is implemented and used in a real application
setting.

3.5 DbModifier Class

Header File: DXCommon/DBP/DbModifier.h

The DbModifier class provides an engine for modifying various properties of a database container.

Refer to the ModRequest supporting class to see the properties that can be modified using this engine.

3.5.1 API

3.5.1.1 Constructor

DbModifier(MTExecutive *xeParent, int iThreadID)

Name Type Use

xeParent MTExecutive * Pointer to the current multi-threaded runtime object

iThreadID int Specify the number of the thread that is creating the object.

3.5.1.2 ModifyThisDb Method

BOOL ModifyThisDb(ModRequest *mrRQ, int iThreadID)

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 18 of 81

Name Type Use

mrRQ ModRequest * Pointer to the ModRequest object that contains all of the
parameters that control the modify operation.

iThreadID int Specify the number of the thread that is invoking the method.

This method provides a means of synchronously initiating a modify operation on a DbModifier object. The
call is blocking and will wait until the modify operation completes before returning to the caller. The
method returns TRUE if the modify operation was successful and FALSE if the operation failed.

Refer to the “Supporting Classes” section of this document for information about the ModRequest class to
see the operations and options that are available for the with this call.

3.5.1.3 Asynchronous Modifier Operations

To invoke a Modify operation asynchronously on a DbModifier object follow the steps below.

1) Create a ModRequest object and populate it with the parameters needed for the operation.

2) Use the “PostARequest” method on the runtime object to dispatch the “ModRequest” message to
the DbModifier.

3.5.1.4 ProxyLogMessage Method

BOOL virtual ProxyLogMessage(ModRequest *mrRQ, char *szMsg, int iThreadID)

Name Type Use

mrRQ ModRequest * Pointer to the ModRequest object that contains all of the
parameters that control the current operation.

szMsg char * Pointer to a null terminated character string containing the
message that is being issued by the DbMover.

iThreadID Int The number of the thread that is invoking the method.

The ProxyLogMessage() method can be overridden in inheriting classes to provide access to the
messages that are issued by the DbModifier. Overriding methods should return TRUE if they completed
their processing or FALSE if they encountered an error while trying to process the message.

3.5.2 Usage Notes

Examine the QModify application to see how the DbModifier is implemented and used in a generic
application setting.

3.6 Helper Class

Header File: DXCommon/Debug/Helper.h

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 19 of 81

The Helper class is only available on the Windows platform and only exposes functionality when the
application is compiled with Debug settings (Define _DEBUG). The class exposes a number of
convenience methods to assist with application debugging.

3.6.1 API

3.6.1.1 Constructor

Helper(ExecEnvironment *xeParent, int iThreadID);

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

The constructor for a Helper object will redirect all C Runtime debugging outputs to STDOUT, so it should
be noted that when used assertion failures are reported on the standard output stream and not through
the normal assertion failure dialog. The constructor will also record the current memory usage so that
subsequent reports of memory usage can show deltas against the initial state.

3.6.1.2 ReportMemoryUsage Method

void ReportMemoryUsage(BOOL bReset, int iThreadID)

void ReportMemoryUsage(BOOL bReset, BOOL bEcho, int iThreadID)

Name Type Use

bReset BOOL Set to TRUE to cause the initial values of the memory statistics
to be reset to the current values (after they are reported). Set
to FALSE to continue reporting against the initial values
recorded when the object was constructed.

bEcho BOOL Set to TRUE to cause the reports of memory usage to be echoed
to the console.

iThreadID int The number of the thread that is invoking the method.

The ReportMemoryUsage method is used to take a snapshot of memory usage and report on the current
values, the deltas since last reported and the deltas since first recorded.

Sample Output:

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 20 of 81

Current(3) Working Set size: 30704 Kb, +328 Kb since last measured, +4580 Kb since first measured, Peak: 30704 Kb.

Current(3) Paged Pool use: 1252 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 1252 Kb.

Current(3) Non-Paged Pool use: 10 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 10 Kb.

Current(3) Normal Objects on the Heap: 28 , 0 since last measured, +7 since first measured, Peak: 28.

Current(3) Normal Objects Allocation: 124 Kb, 0 Kb since last measured, +2 Kb since first measured, Peak: 124 Kb.

Current(3) Client Objects on the Heap: 0 , 0 since last measured, 0 since first measured, Peak: 0.

Current(3) Client Objects Allocation: 0 Kb, 0 Kb since last measured, 0 Kb since first measured, Peak: 0 Kb.

The report indicates the sequence number of memory reports “Current(3)” indicates the third time that the
reporting method has been called. Each line of output references a different memory statistic and shows
the current, delta since last reported, delta since first reported and the peak measurement of the
particular statistic. The statistics of particular focus for programmers are the count and size of “Normal
Objects” on the heap, steady increases in these values would indicate a leak of C++ objects from within
the application.

It should be noted that Debug compilations of DX applications also enables the C runtime memory leak
tracing protocols. At any point in a program a call can be made to the C Runtime “CheckMemoryLeaks()”
method and this will report on each object that is allocated on the Heap giving the source file and line
number where it was allocated as well as the size of the object. A call to CheckMemoryLeaks should be
made immediately before an application terminates this will show any objects that remain allocated and
provides an excellent means of detecting and fixing leaks caused by failing to delete C++ objects or
failing to free memory allocations.

3.6.1.3 CreateMemoryDump Method

void CreateMemoryDump(int iThreadID)

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

This method can be called at any point in an application to create a “minidump” file of the application
process including heap memory. The memory dump files are created in the
“IBM_TECHNICAL_SUPPORT” sub-directory in the Notes data directory. The minidump files can be
loaded into Visual Studio for contextual analysis or in the Windows Debugger (WinDbg).

The dump files are created with a standard name format:

DXDump-<appname>YYYYMMDD-HHMMSS.dmp.

Where <appname> is the name of the application and YYYYMMDD-HHMMSS is the timestamp that the
dump was created.

3.6.2 Usage Notes

The address of the Debug Helper object can be inserted into certain DX Kernel objects in order to provide
additional debugging capability.

Setting the address of the Helper in the CommandHandler->DebugHelper member enables the following
additional commands.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 21 of 81

MEMORY | MEM – Display the current memory statistics.

DUMP – Create a minidump (with heap memory).

Setting the address of the Helper in the TransactionHandler->DebugHelper member causes the
transaction handler to report on the memory statistics of the application after completion of each
transaction that is dispatched.

3.7 DesignManager Class

Header File: DXCommon/DM/DesignManager.h

The DesignManager class provides an engine that allows an application to add design elements to a
Notes database from a collection of DXL sources.

3.7.1 API

3.7.1.1 Constructor

DesignManager(ExecEnvironment *xeParent)

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

3.7.1.2 LoadManifest Method

BOOL LoadManifest(char *szManifestID)

Name Type Use

szManifestID char * Pointer to a null terminated character string that contains the
location of the manifest file (XML document) that defines all of
the design elements that can be applied to the database. The
location is normally expressed as an HTTP URL but can also be a
file name or a program resource identifier in the form “#nnn”.

A design manifest is an XML document that contains a number of individual “Design Sets” and each
Design Set can contain a number of “Design Elements”. Calls to LoadManifiest will cause the XML
document to be located loaded into memory and parsed into a series of objects that can be used to apply
collections of design elements to a database. Appendix B contains a specification for the XML document
that is used to form a valid Manifest. Databases that are needed by DX utilities are all available on the
Internet as “Virtual Templates”, a virtual template is a Manifest document and the sub-ordinate design
elements that can be applied to a blank database to instantiate the complete design using a
DesignManager instance. Refer to the RDBCreate application to see how this is implemented.

The method returns TRUE if the specified manifest was successfully loaded and parsed or FALSE if it
was not.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 22 of 81

3.7.1.3 DestroyManifest Method

void DestroyManifest(void)

A call to the DestroyManifest method will cause the currently loaded manifest and all of the objects that it
represents to be deleted. A call to DestroyManifest should always be made after all the required design
elements from a manifest have been applied to a database.

3.7.1.4 ApplyAllDesignSets Method

BOOL ApplyAllDesignSets(DBHANDLE hDB)

BOOL ApplyAllDesignSets(void)

Name Type Use

hDB DBHANDLE Handle of the database to which all of the design elements in a
manifest will be applied.

A call to the ApplyAllDesignSets method can only be made on a DesignManager that has a valid loaded
manifest. The call will apply all of the design elements listed in every Design Set in the Manifest.

If the form of the call that does not specify a database handle is used then the design elements will all be
applied to the current Runtime Repository database.

The call returns TRUE if all design elements were applied and FALSE if not.

3.7.1.5 ApplyDesignSet Method

BOOL ApplyDesignSet(char *szSetName, DBHANDLE hDB)

BOOL ApplyDesignSet(char *szSetName)

Name Type Use

szSetName char * Pointer to a null terminated string containing the name of a
design set in the manifest that will be applied to the database.

hDB DBHANDLE Handle of the database to which all of the design elements in
the named design set will be applied.

A call to the ApplyDesignSets method can only be made on a DesignManager that has a valid loaded
manifest. The call will apply all of the design elements listed in the specified Design Set in the Manifest.

If the form of the call that does not specify a database handle is used then the design elements will all be
applied to the current Runtime Repository database.

The call returns TRUE if all design elements were applied and FALSE if not.

3.7.1.6 GetBuildInfo_s Method

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 23 of 81

void GetBuildInfo_s(char *szBuild, int iSize)

Name Type Use

szBuild char * Pointer to a buffer where a string will be returned that
identifies the build of the DesignManager.

iSize int Size of the buffer.

This method will return a string that identifies the current build information of the Design Manager in the
passed buffer.

3.7.1.7 GetDefaultDbTitle_s Method

void GetDefaultDbTitle_s(char *szTitle, int iSize)

Name Type Use

szTitle char * Pointer to a buffer where a string will be returned that contains
a default database title derived from the current manifest.

iSize int Size of the buffer.

This method will return a string containing a default title that can be used for a new database, the title
string is derived from the content of the manifest document that was applied to the database.

3.7.1.8 ValidateDesign Method

BOOL ValidateDesign(DBHANDLE hDB)

Name Type Use

hDB DBHANDLE Handle of the database which will have its design validated and
if necessary fixed.

The ValidateDesign method can be used to check the design of a database that has been loaded from a
manifest for logical consistency and apply limited corrections to make the design valid.

3.7.1.9 Control Modifiers

The following members may be set to specific values to modify the behaviour of the DesignManager
engine.

int iDMDesignImportOption – Set this member to any of the DXLIMPORTOPTION_ symbolic

values that can condition the processing in the DXLImporter, see the Notes API documentation for
options.

The default is set to DXLIMPORTOPTION_REPLACE_ELSE_CREATE.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 24 of 81

 BOOL bDMReplaceDbProperties – Set this member to FALSE if you do not want the design to

modify any DB properties.

The default is set to TRUE.

BOOL bDMReplicaRequiredForReplaceOrUpdate – Set this member to FALSE if you wish design

updates or replace operations to be made using DXL that does not specify the Replica ID of the target
database.

The default is set to TRUE;

int iDMInputValidationOption – Set this member to any of the Xml_Validate values that can be

set in the DXLImporter.

The default is set to Xml_Validate_Never.

BOOL bDMExitOnFirstFatalError – Set this member to FALSE to prevent the DXLImporter from

abandoning processing of an XML stream when it first encounters an error.

int iDMUnknownTokenLogOption – Set this member to any of the DXLLOGOPTION_ symbolic

values to determine the logging behaviour of the DXLImporter with unknown XML tokens.

3.7.2 Usage Notes

3.8 DXResourceLoader Class

Header File: DXCommon/DXResourceLoader.h

The DXResourceLoader class provides an engine for loading a resource (usually an XML document) into
memory. The resource can be loaded from a remote HTTP source, a native file, a resource embedded in
the application (windows only), a TEXT or TEXT_LIST item in a Notes Document or a Rich Text item in a
notes document. The engine is capable of returning the resource loaded completely in-memory or
providing the resource on-demand to a reader function such as the XML_READ_FUNCTION of a
DXLImporter. The class also provides the capability for Posting a resource file into a new Notes
Document via HTTP.

3.8.1 API

3.8.1.1 Constructor

DXResourceLoader(ExecEnvironment *xeParent, int iThreadID)

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 25 of 81

thread that is creating the object.

3.8.1.2 loadThisResource Method

MEMHANDLE loadThisResource(char *szResourceSource, int iThreadID)

MEMHANDLE loadThisResource(NOTEHANDLE hnSource, char *szItemName, int iThreadID)

Name Type Use

szResourceSource char * Pointer to a null terminated character string that contains
the location of the resource file (XML document) that is to
be loaded. The location is normally expressed as an HTTP
URL but can also be a file name or a program resource
identifier in the form “#nnn”.

hnSource NOTEHANDLE Handle of a notes document that contains an item that is
carrying the requested resource.

szItemName char * Pointer to a null terminated string that contains the name
of the item on a notes document that contains the
requested resource.

iThreadID int For single threaded applications always specify 0 to
indicate the main thread of a program otherwise specify
the number of the thread that is creating the object.

The loadThisResource method does exactly what it says on the box, it will take the passed parameters
that identify the location of the resource and will load it into memory and return a handle to the memory
that contains the loaded resource. If the resource cannot be loaded then the method returns
NULLHANDLE.

The location of the resource can be specified in any of the following ways.

A HTTP URL – e.g. http://some.domain.com/arbitrary/location/specifier.

A File Name – e.g. “c:\folder\subforlder\resource.xxx” or “/home/folder/subforder/resource.xxx”.

A Resource ID – e.g. “#0251” (windows only).

An Item on a Note – specified as the handle to an open note and the name of the item that contains the
resource.

3.8.1.3 loadThisResourceOnDemand Method

DXRESOURCEHANDLE loadThisResourceOnDemand(char *szResourceSource, int iThreadID)

DXRESOURCEHANDLE loadThisResourceOnDemand(NOTEHANDLE hnSource, char *szItemName, int

iThreadID)

DXRESOURCEHANDLE loadThisResourceOnDemand(MEMHANDLE hResource, int iThreadID)

Name Type Use

szResourceSource char * Pointer to a null terminated character string that contains
the location of the resource file (XML document) that is to

http://some.domain.com/arbitrary/location/specifier

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 26 of 81

be loaded. The location is normally expressed as an HTTP
URL but can also be a file name or a program resource
identifier in the form “#nnn”.

hnSource NOTEHANDLE Handle of a notes document that contains an item that is
carrying the requested resource.

szItemName char * Pointer to a null terminated string that contains the name
of the item on a notes document that contains the
requested resource.

hResource MEMHANDLE Handle of a resource that has already been loaded into
memory.

iThreadID int For single threaded applications always specify 0 to
indicate the main thread of a program otherwise specify
the number of the thread that is creating the object.

The loadThisResourceOnDemand method does exactly the same as the loadThisResource method
except the resource is not loaded immediately. The resource is loaded when the XML reader function is
invoked. The interface follows the protocols for the XML reader defined for the DXLImporter, it will
continue to return partial results in the passed buffer until the end of the resource stream is reached
whereupon it will return 0 bytes.

The location of the resource can be specified in any of the following ways.

A HTTP URL – e.g. http://some.domain.com/arbitrary/location/specifier.

A File Name – e.g. “c:\folder\subforlder\resource.xxx” or “/home/folder/subforder/resource.xxx”.

A Resource ID – e.g. “#0251” (windows only).

An Item on a Note – specified as the handle to an open note and the name of the item that contains the
resource.

Memory Handle – The handle of a resource that has already been loaded into memory.

Calls to loadThisResourceOnDemand will return a DXRESOURCEHANDLE or NULLHANDLE if the
resource specifiers were invalid.

The DXRESOURCEHANDLE must be passed as the context parameter to the XML reader routine via
whatever process will invoke the reader.

A DXRESOURCEHANDLE must be destroyed after use by passing it in a call to the
disposeResourceHandle method.

3.8.1.4 cloneResourceHandle Method

DXRESOURCEHANDLE cloneResourceHandle(DXRESOURCEHANDLE hdrPrime, int iThreadID)

Name Type Use

hdrPrime DXRESOURCEHANDLE Handle of an existing load on demand resource.

The resource that underlies a DXRESOURCEHANDLE contains stateful information and therefore can
only be used once. The cloneResourceHandle method provides the capability to provide copies on an on-
demand resource to be consumed by multiple readers.

http://some.domain.com/arbitrary/location/specifier

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 27 of 81

3.8.1.5 disposeResourceHandle Method

void disposeResourceHandle(DXRESOURCEHANDLE hdrUsed, int iThreadID)

Name Type Use

hdrUsed DXRESOURCEHANDLE Handle of an existing load on demand resource.

Call the disposeResourceHandle method to destroy an on demand resource handle and free the
underlying objects and memory associated with the resource.

3.8.1.6 WrapperXMLReader Method

static DWORD LNCALLBACK WrapperXMLReader(unsigned char *ucBuffer, DWORD dwMaxToRead,

void *pContext)

The signature of this method conforms to the Notes API XML_READ_FUNCTION signature and therefore
can be passed into any call in the Notes API that needs to load XML, such as the DXLImport method.

Name Type Use

ucBuffer UCHAR * Pointer to a buffer where the next chunk of XML will be
returned by the routine.

dwMaxToRead DWORD The maximum number of characters that can be read into the
passed buffer.

pContext void * The DXRESOURCEHANDLE of the resource that is to be read
on behalf of the caller.

The method will return the number of characters that have been returned in the buffer. The method
should be called continuously until it returns 0 indicating that the complete resource has been read.

3.8.1.7 uploadThisResource Method

MEMHANDLE uploadThisResource(char *szFileName, int iFileType, DXUploadContext

*ducThis, int iThreadID)

MEMHANDLE uploadThisResource(MEMHANDLE hmResource, int iFileType, DXUploadContext

*ducThis, int iThreadID)

Name Type Use

szFileName char * Pointer to a null terminated character string that contains
the file name of the resource that is to be uploaded.

hmResource MEMHANDLE Handle of an area of memory that contains the resource
that is to be uploaded.

iFileType Int An integer value that indicates the type of resource file
that is being uploaded. Use one of the following symbolic
values.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 28 of 81

UPLOAD_FILE_TEXT – for plain text files
UPLOAD_FILE_XML – for XML documents
UPLOAD_FILE_BINARY – for resources with binary content

ducThis DXUploadContext * Pointer to a DXUploadContext object that has been
populated to describe the target web page where the
resource will be uploaded.

iThreadID int For single threaded applications always specify 0 to
indicate the main thread of a program otherwise specify
the number of the thread that is creating the object.

The method returns a MEMHANDLE containing the response HTML from the posting operation, it is the
responsibility of the caller to parse the response to determine the remote success or otherwise. The
method will return NULLHANDLE if the local processing fails.

3.8.2 Usage Notes

Refer to the use of this class in the DesignManager class and the implementation in the RDBCreate
application to see examples of immediate and on demand loading and consumption of resources.

3.9 DominoExplorer Class

Header File: DXCommon/DX/DominoExplorer.h (Single Threaded)

Header File: DXCommon/MTDX/DominoExplorer.h (Multi Threaded)

The DominoExplorer (Domino eXplorer) class is the original functional class from which the complete DX
package takes its name. The class provides an engine to resolve an arbitrary scope within a Domino
infrastructure and return each of the databases within the scope to a callout function.

The DominoExplorer class is implemented as either a single threaded class or a multi threaded class

3.9.1 API

3.9.1.1 Constructor

DominoExplorer(MTExecutive *xeParent, int iInstance, int iThreadID)

DominoExplorer(ExecEnvironment *xeParent, int iThreadID)

Name Type Use

xeParent MTExecutive * Pointer to the current multi threaded runtime object

xeParent ExecEnvironment * Pointer to the current single threaded runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

Include the appropriate header file for the DominoExplorer class in your application and construct the
explorer object pass it a pointer to the appropriate runtime.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 29 of 81

3.9.1.2 ProcessReqest Method

BOOL ProcessRequest(DXRequest *dxrRQ, int iThreadID)

Name Type Use

dxrRQ DXRequest* Pointer to a DXRequest object that specifies the desired scope
and processing exits and options.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

Refer to the DXRequest class in the Supporting Classes section of this document for details of how to set
up the request for processing by the Domino Explorer.

The method will return TRUE if all databases within the specified scope were successfully processed and
FALSE if not.

3.9.1.3 Asynchronous Processing

To invoke an explorer operation asynchronously on a DominoExplorer object follow the steps below.

1) Create a DXRequest object and populate it with the parameters needed for the operation.

2) Use the “PostARequest” method on the runtime object to dispatch the “DXRequest” message to
the DominoExplorer.

3.9.2 Usage Notes

Refer to the QCopy application and the processing of “Feeder Transactions” to see the implementation of
the Domino Explorer in a real application setting.

3.10 DXNoteScanner Class

Header File: DXCommon/DX/DXNoteScanner.h (Single Threaded)

Header File: DXCommon/MTDX/DXNoteScanner.h (Multi Threaded)

The DXNoteScanner class provides a sophisticated selection engine that can derive multiple collections
of notes from a Notes database based on caller specified criteria.

3.10.1 API

3.10.1.1 Constructor

DXNoteScanner(MTExecutive *xeParent, int iThreadID)

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 30 of 81

Name Type Use

xeParent MTExecutive * Pointer to the current multi threaded runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

3.10.1.2 ScanDb Method

BOOL ScanDb(DXNoteScanReq *nsrCurrent, int iThreadID)

Name Type Use

nsrCurrent DXNoteScanReq * Pointer to the scan request object that defines the collections
that are to be built.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

Refer to the definition of the DXNoteScanReq class to see the options and limitations for searching. The
method returns TRUE if the search(es) were completed and FLASE if they could not be completed. The
usual cause of a FALSE return is that invalid search parameters were passed in the scan request.

3.10.2 Usage Notes

3.11 ObjectCache Class

Header File: DXCommon/Misc/ObjectCache.h

The ObjectCache class provides the partial implementation of objects that perform write through cache
processing for a collection of arbitrary objects. The class is partially abstract some methods must be
implemented in an inheriting class. The cache mechanism is implemented in the base class, methods that
need to be aware of the type of object being cached need to be implemented in an inheriting class.

3.11.1 API

3.11.1.1 Constructor

ObjectCache(void)

Default constructor for the base class.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 31 of 81

3.11.1.2 initCache Method

void initCache(int iMaxEntries, int iStrategy, int iThreadID)

Name Type Use

iMaxEntries int The maximum number of entries that will be held in the cache
memory.

iStrategy int An integer value that defines the strategy that will be followed
by the cache. Use one of the following symbolic values.
CACHE_STRATEGY_MFU – Most Frequently Used

CACHE_STRATEGY_MRU – Most Recently Used

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

Inheriting classes MUST invoke this method to initialise the cache structure and set the constraints for
cache operation.

Specify CACHE_STRATEGY_MFU to cause the cache to favour the most frequently referenced objects. If

the cache becomes full then the object with the lowest reference count will be dismissed from the cache.

Specify CACHE_STRATEGY_MRU to cause the cache to favour the most recently referenced objects. If the

cache becomes full then the object that has not been referenced for the longest time will be dismissed
from the cache.

3.11.1.3 getCachedObject Method

void *getCachedObject(char *szKey, int iThreadID)

Name Type Use

szKey char * A pointer to a null terminated character string that contains the
key of the object that is to be retrieved from the cache.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is making the call.

The contract for this method is that it will always return a pointer to a valid object of the type that is being
cached. If the object with the matching key is already in the cache then the pointer to that object is
returned to the caller. If the object is not currently in the cache then the createObject method is invoked
(this method must be instantiated in the inheriting class) to create a new object, either from a backing
store or a brand new initialised object, the new object is added to the cache and returned to the caller.

3.11.1.4 getCachedObjectExt Method

void *getCachedObjectExt(char *szKey, BOOL bCreate, int iThreadID)

Name Type Use

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 32 of 81

szKey char * A pointer to a null terminated character string that contains the
key of the object that is to be retrieved from the cache.

bCreate BOOL Set this to TRUE if the method will follow the same contract as
the getCachedObject method. Specify FALSE if you want the
method to return NULL if the requested object is not present in
the cache.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is making the call.

The contract for this method depends on the value passed in the bCreate parameter. If TRUE then the
contract is that it will always return a pointer to a valid object of the type that is being cached. If the object
with the matching key is already in the cache then the pointer to that object is returned to the caller. If the
object is not currently in the cache then the createObject method is invoked (this method must be
instantiated in the inheriting class) to create a new object, either from a backing store or a brand new
initialised object, the new object is added to the cache and returned to the caller. If FALSE is specified
then the method will return the pointer to the object that matches the passed key. If the requested object
is not currently present in the cache then the method will return NULL.

3.11.1.5 getNextCachedObject Method

void *getNextCachedObject(void *pCurrentObject, int iThreadID)

Name Type Use

pCurrentObject void * A pointer to the last object retrieved from the cache or
specify NULL to get the first object.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

This method provides an iterator over the current contents of the cache. Specifying NULL for the current
object parameter will return a pointer to the first object in the cache or NULL if the cache is empty. The
method will return NULL if a pointer to the last object in the cache is passed.

3.11.1.6 Drain Method

void drain(int iThreadID)

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

This method should be called when the cache is about to be destroyed, this causes all of the objects that
remain in the cache to be passed to the cacheOut interface. The cacheOut interface can be used to
optionally serialize the objects to a backing store at a minimum the underlying object must be destroyed
by the interface.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 33 of 81

3.11.1.7 getEntries Method

DWORD getEntries(void)

This method returns a DWORD containing the count of objects currently in the cache.

3.11.1.8 dump Method

void dump(int iThreadID)

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is creating the object.

This method performs the same function as the drain method but passes a flag to the cacheOut interface
to indicate that objects should not be serialised to any backing store.

3.11.1.9 selectObject Method

virtual BOOL selectObject(void *pObject, char *szKey, int iThreadID)

Name Type Use

pCurrentObject void * A pointer to an object currently in the cache.

szKey char * A pointer to a null terminated character string that contains
the key of the object that is to be retrieved from the cache.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

This method must be implemented in an inheriting class. The method must test if the object that is passed
matches the key that is passed. If the object matches the key then the method must return TRUE
otherwise it should return FALSE.

3.11.1.10 createObject Method

virtual void *createObject(char *szKey, int iThreadID)

Name Type Use

szKey char * A pointer to a null terminated character string that contains
the key of the object that is to be created.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 34 of 81

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

This method must be implemented in an inheriting class. The method must construct a new object based
on the passed key and return a pointer to that object. The method can create the object by loading the
serialised form from a backing store or simply by instantiating and populating the object.

3.11.1.11 cacheOut Method

virtual void cacheOut(void *pObject, BOOL bWrite, int iThreadID)

Name Type Use

pObject void * A pointer to an object currently in the cache.

bWrite BOOL If set to TRUE then the passed object should be serialized to a
backing store and then destroyed. If set to FALSE then the
passed object should just be destroyed.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is making the call.

 This method must be implemented in an inheriting class. The primary responsibility of the method is to
destroy the passed object as it is removed from the cache. Implementations may optionally take notice of
the bWrite parameter and serialise the object to a backing store if requested before destroying the object.

3.11.1.12 lockTheCache Method

void lockTheCache(int iThreadID)

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

The lockTheCache method will assert a mutex over the cache on behalf of the caller. If the mutex is
already asserted by another thread then the call will block until the mutex becomes free and can be
asserted. If the caller already owns the mutex then the call will just return.

3.11.1.13 unlockTheCache Method

void unlockTheCache(int iThreadID)

Name Type Use

iThreadID int For single threaded applications always specify 0 to indicate

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 35 of 81

the main thread of a program otherwise specify the number
of the thread that is making the call.

The unlockTheCache method will release the mutex over the cache on behalf of the caller. If the mutex is
not held by the caller then the call just returns.

3.11.1.14 Statistics Members

The following public members are exposed to allow callers to collect statistical data on the performance of
the cache.

 DWORD dwSearches – count of the number of searches performed on the cache.

 DWORD dwSearched – count of objects that were examined during searches.

 DWORD dwNoHits – count of searches that failed to locate the requested object.

 DWORD dwReorgs – count of cache reorganisations that were attempted.

 DWORD dwWrites – count of the number of objects that were removed from the cache.

 DWORD dwWaits – count of the number of calls to lock the cache that had to wait.

 DWORD dwWaitQuanta – count of wait cycles while waiting for the cache mutex.

 DWORD dwRSkips – count of cache reorganisations that were abandoned.

 DWORD dwMFUIProms – count of objects that were promoted in the cache because the
reference count exceeded that of other objects.

 DWORD dwMFUIPQs – count of slots over which objects were promoted in the cache.

3.11.2 Usage Notes

3.12 TimeBasedArray Class

Header File: DXCommon/Misc/TimeBasedArray.h

The TimeBasedArray class provides the functionality to manage arrays of counters or accumulators
against a dynamic time base. Entries are incremented or accumulated against points in time and the
class will dynamically manage recording the values against a range of time buckets. The class also
provides the capability to serialise the contents of the arrays to a Notes document and marshall the arrays
from a Notes document.

By default variables are managed against the following time buckets, the buckets are measured from the
latest timestamp recorded.

1. Hourly – for the latest 7 days.

2. Daily – for the latest 64 days.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 36 of 81

3. Weekly – for the latest 24 weeks.

4. Monthly – for the latest 24 months.

5. Yearly – for the latest 10 years.

6. Grand Total.

3.12.1 API

3.12.1.1 Constructor

TimeBasedArray()

TimeBasedArray(int iVars, BOOL bRecordHourly)

Name Type Use

iVars int The number of independent variables that will be recorded in
the array.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

The TimeBasedArray is normally implemented in an inheriting class so the default constructor will be
used. If the TimeBasedArray does not need to be serialised to a Notes document then the class can be
instantiated natively. Inheriting classes must perform the following actions (usually in their constructors)
before using the array.

1. Set the VarCount member (int) to the number of independent variables that are to be handled by
the array object.

2. Set the Hourly member (BOOL) to TRUE if hourly buckets will be recorded and FALSE if not.

3. Set the tdAnchor member (TIMEDATE) to the TIMEDATE_MINIMUM constant value.

4. Call the initArray() method to initialise the structures underlying the array.

3.12.1.2 isArrayInitialised Method

BOOL isArrayInitialised(void)

This method returns TRUE if the array has been correctly initialised and FALSE if not.

3.12.1.3 marshall Method

BOOL marshall(char *szLatestTDFieldName, NOTEHANDLE hnSNote)

Name Type Use

szLatestTDFieldName char * A pointer to a null terminated character string that
contains the name of an item on the notes document
that contains the latest timestamp recorded.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 37 of 81

hnSNote NOTEHANDLE Handle of the note that contains the serialized array
data.

This method will call the getFieldName method to get the base field name for each variable recorded in
the array. For each variable the method will load values from 4 or 5 separate number array items and one
number item to populate the array. The item names for the arrays are constructed using the base name
for the variable and a suffix of “Hourly” (Optional), “Daily”, “Weekly”, “Monthly” and “Yearly” the number
field will use the suffix “Total”.

3.12.1.4 serialize Method

BOOL serialize(char *szLatestTDFieldName, NOTEHANDLE hnSNote)

Name Type Use

szLatestTDFieldName char * A pointer to a null terminated character string that
contains the name of an item on the notes document to
contain the latest timestamp recorded.

hnSNote NOTEHANDLE Handle of the note that will contain the serialized array
data.

This method is the counterpart of the marshall method. It will serialise the information contained in the
TimeBasedArray to a Notes document. The method will call the getFieldName method to get the base
field name for each variable to be recorded in the array. For each variable the method will store values in
4 or 5 separate number array items and one number item from the values recorded in the array. The item
names for the arrays are constructed using the base name for the variable and a suffix of “Hourly”
(Optional), “Daily”, “Weekly”, “Monthly” and “Yearly” the number field will use the suffix “Total”.

3.12.1.5 increment Method

void increment(int iVarIndex, TIMEDATE *tdEvent)

Name Type Use

iVarIndex int The index number of the variable to be incremented,
numbered from 1 upwards.

tdEvent TIMEDATE The timestamp associated with the count increment.

The increment method will increment the counters in the TimeBasedArray that apply to the specified
timestamp and variable. If the timestamp is later than the previous latest timestamp recorded then the
array will reorganise itself to reflect the new timebase.

3.12.1.6 add Method

void add(int iVarIndex, TIMEDATE *tdEvent, DWORD dwValue)

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 38 of 81

Name Type Use

iVarIndex int The index number of the variable to be incremented,
numbered from 1 upwards.

tdEvent TIMEDATE The timestamp associated with the count increment.

dwValue DWORD The value by which the count will be incremented

The add method will increment the counters in the TimeBasedArray by a specified amount that apply to
the specified timestamp and variable. If the timestamp is later than the previous latest timestamp
recorded then the array will reorganise itself to reflect the new timebase.

3.12.1.7 decrement Method

void decrement(int iVarIndex, TIMEDATE *tdEvent)

Name Type Use

iVarIndex int The index number of the variable to be decremented,
numbered from 1 upwards.

tdEvent TIMEDATE The timestamp associated with the count decrement.

The decrement method will decrement the counters in the TimeBasedArray that apply to the specified
timestamp and variable. If the timestamp is later than the previous latest timestamp recorded then the
array will reorganise itself to reflect the new timebase.

3.12.1.8 subtract Method

void subtract(int iVarIndex, TIMEDATE *tdEvent, DWORD dwValue)

Name Type Use

iVarIndex int The index number of the variable to be decremented,
numbered from 1 upwards.

tdEvent TIMEDATE The timestamp associated with the count decrement.

dwValue DWORD The value by which the count will be decremented

The subtract method will decrement the counters in the TimeBasedArray by a specified amount that apply
to the specified timestamp and variable. If the timestamp is later than the previous latest timestamp
recorded then the array will reorganise itself to reflect the new timebase.

3.12.1.9 getFieldName Method

void virtual getFieldName(int iVarNum, char *Bfr)

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 39 of 81

Name Type Use

iVarIndex int The index number of the variable to be decremented,
numbered from 1 upwards.

Bfr char * A pointer to a buffer that will be populated with the
base filed name associated with the variable identified
by the index number.

This method should be implemented in inheriting classes. The value set in the buffer should be a null

terminated character string and should not exceed TBA_MAX_BASENAME characters in length.

There is a default implementation of this method that returns “Counter<n>” where <n> is the index
number.

3.12.1.10 getArraySize Method

int getArraySize(int iTimeIndex)

Name Type Use

iTimeIndex int A value that indicates which timebase array size should
be returned, use one of the following symbolic values.

TBA_HOURLY_INDEX – Hourly Array

TBA_DAILY_INDEX – Daily Array

TBA_WEEKLY_INDEX – Weekly Array

TBA_MONTHLY_INDEX – Monthly Array

TBA_YEARLY_INDEX – Yearly Array

TBA_TOTAL_INDEX – Total Array

Calls to this method will return the size of a particular timebase area of the array.

3.12.1.11 getCounterValue Method

DWORD getCounterValue(int iVarIndex, int iTimeIndex, int iElement)

Name Type Use

iVarIndex int The index number of the variable to be returned,
numbered from 1 upwards.

iTimeIndex int A value that indicates which timebase array size should
be returned, use one of the following symbolic values.

TBA_HOURLY_INDEX – Hourly Array

TBA_DAILY_INDEX – Daily Array

TBA_WEEKLY_INDEX – Weekly Array

TBA_MONTHLY_INDEX – Monthly Array

TBA_YEARLY_INDEX – Yearly Array

TBA_TOTAL_INDEX – Total Array

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 40 of 81

iElement int The index of the array cell to be returned, zero based
maximum value can be array size – 1.

Calls to this method will return a DWORD value from a particular cell in the array. The target cell is
identified by the variable index number, the timebase index number and the element index of the sub-
array.

3.12.2 Usage Notes

The class provides a simple means of maintaining running recordings of activities against time. Multiple
variables are provided in the class so that they can all be maintained against a common timebase.

3.12.2.1 UI Implementation

It is possible to implement a Form to display multiple variables using only a single sub-form that displays
the serialised form of the TimeBasedArray for a single variable, this can greatly reduce the development
time for displaying data captured through this mechanism.

1) The Problem

Refer to the Serialize method to see how data is stored in a document during a serialize() function. You
end up with a series of lists with field names that are a concatenation of a variable part and a fixed part. If
you want to display multiple Time Based Arrays in a Form you really do not want to have to hand code all
of the code for each variable to get them into the UI.
What would be nice would be to define a few fields and then just include a sub-form (the same one) for
each variable and the sub-form dynamically computes what to display.

2) The IDEA

Define a few hidden fields at the top of the form as follows

FieldPrefix := "VarName1":"VarName2":"VarName3" The names of the variables i.e. fixed
parts of the field names
FieldDescription := "Variable #1":"Variable #2":"Variable #3" The descriptive names for the variables
FieldLatestStamp := "FieldName" The name of the field that contains the
latest timestamp
FieldIndex := 0 Index of the field you are currently
displaying

The fill the Form as follows :-

<Variable Display Subform> For variable #1
<hidden field - increment FieldIndex>
<Variable Display Subform> For variable #2
<hidden field - increment FieldIndex>

NOTE: The subform must use computed text rather than computed for display fields to display the data to
prevent duplicate field names.

3) The Implementation

a) Problem - when you try to insert the second instance of the sub-form then designer says "NO – sub-
form is already in the form".

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 41 of 81

b) Try computing the sub-form name for the second and subsequent sub-forms - ok in designer then
client says - "NO – sub-form is already in the form".

c) Give a sequential number of aliases to the sub-form and use those names in the computed sub-form
formula - and hey the man from Lotus he say "YES" - cool.

So now one can expend energy once to make a single good sub-form and then just include it as many
times as you like (subject to number of aliases you can define).

I do love it when a bit of lateral thinking contributes positively to the inherent laziness of developers.

4) Formula for Computed Text to Display a Cell Value

The Hidden fields at the top of the form as set as follows.

FieldPrefix := "Created":"Modified"
FieldLatestStamp := "LatestTimeStamp"
FieldDescription := "Creation Times":"Modification Times"
FieldIndex := 0

The subform shows 3 fields all computed text calculated as follows.

The caption: @Return(@Subset(@Subset(FieldDescription; FieldIndex + 1); -1))

Latest TimeStamp: @Return(@Text(@GetField(FieldLatestStamp);"D0T0Z2"))

This Month: @Return(@Text(@Subset(@GetField(@Subset(@Subset(FieldPrefix;
FieldIndex + 1) ; -1) + "Month"); 1); "F0"))

The computed for display field between the two subforms has the following value:

@SetField("FIeldIndex"; FieldIndex + 1); @Return("This would not be displayed - " + @Text(FieldIndex;
"F0"))

3.13 AutoScaleFrequencyAnalyser Class

Header File: DXCommon/Misc/AutoScaleFrequencyAnalyser.h

The AutoScaleFrequencyAnalyser call provides a means of recording frequency counts against a variable
data value without having to know the bounds of the variable data value before you start. The class
provides a dynamically scaled but fixed size array that dynamically rescales itself to accommodate
changing data bounds.

3.13.1 API

3.13.1.1 Constructor

AutoScaleFrequencyAnalyser(int Buckets, int Outliers, int RenormBkts)

Name Type Use

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 42 of 81

iBuckets int The number of intervals that will be recorded (array
size)

iOutliers int The number of outlier data values that will be recorded,
outliers are recorded at the high end and the low end of
the data bounds and do not cause the array to be re-
scaled.

iRenormBkts int The number of data intervals that will be used to extend
the data bounds to incorporate close outliers at the end
of recording.

As a guide set the number of outliers to 10% of the number of data intervals (buckets). Set the
iRenormBkts to 5% of the number of the number of data intervals (buckets).

3.13.1.2 DisallowOutliers Method

void DisallowOutliers(void)

The DisallowOutliers method prevents the recording mechanism from inhibiting the recalling of the array
by data values that are outside the current data bounds.

3.13.1.3 RecordDataPoint Method

void RecordDataPoint(DWORD dwDP)

Name Type Use

dwDP DWORD The data value to be recorded in the data set.

Use the RecordDataPoint method to add a new data point to the data set being recorded.

3.13.1.4 GetFrequency Method

DWORD GetFrequency(int Ordinate, DWORD *lo, DWORD *hi)

Name Type Use

iOrdinate int The index (zero based) of the data interval that is being
queried.

lo DWORD * Pointer to a DWORD to be filled with the lower bound
of the data recorded in this interval.

hi DWORD * Pointer to a DWORD to be filled with the upper bound
of the data recorded in this interval.

This method will return the frequency count of a particular data interval in the array. The index of the cell
can be from 0 to (Number of intervals – 1). The method will also return the lower and upper bounds of the
data values that have been recorded in this interval (bucket).

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 43 of 81

3.13.1.5 GetLowOutlierCount Method

int GetLowOutlierCount(void)

This method will return the count of low (below the lower data bound) outliers currently recorded in the
array.

3.13.1.6 GetHighOutlierCount Method

int GetHighOutlierCount(void)

This method will return the count of high (above the upper data bound) outliers currently recorded in the
array.

3.13.1.7 GetLowOutlier Method

DWORD GetLowOutlier(int Ordinate)

Name Type Use

iOrdinate int The index (zero based) of the data outlier that is being
queried.

This method will return a DWORD containing the value of a low outlier from the data set. The index may
be from 0 to (GetLowOutlierCount – 1).

3.13.1.8 GetHighOutlier Method

DWORD GetHighOutlier(int Ordinate)

Name Type Use

iOrdinate Int The index (zero based) of the data outlier that is being
queried.

This method will return a DWORD containing the value of a high outlier from the data set. The index may
be from 0 to (GetLowOutlierCount – 1).

3.13.2 Usage Notes

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 44 of 81

The class provides a very simple interface to use for recording data frequencies and recalling the values
for display in a tabular or even graphic histogram form.

3.14 NEResolver Class

Header File: DXCommon/NE/NEResolver.h

IMPORTANT NOTE: This class is undergoing further development and may change radically in future
releases of DXCommon.

IMPORTANT NOTE: This class uses the Windows LDAP API implementation rather than the Domino
LDAP API this precludes the class from being available across platforms. The reason for using the
Windows API has nothing to do with the functionality contained in the resolver class itself. It was due to
the need to use it an an Authentication DSAPI implementation where the LDAP session needed to be
shared between the DSAPI and the resolver and there are some BIND capabilities that were needed that
were only exposed by the Windows API. In future releases of the class if a hack can be found to remove
the dependency on the Windows LDAP API then the class will revert to using the Domino LDAP API.

The class provides mechanisms for mapping identities “across the great divide” i.e. between a Domino
infrastructure and a Microsoft AD infrastructure. The functionality of the class supports a simple usage
model, given an arbitrary identity (Domino or AD) the resolver will return a specific identity from the
Domino or AD domains that belongs to the same entity as identified by the arbitrary identity that was
supplied.

3.14.1 API

3.14.1.1 Constructor

NEResolver(ExecEnvironment *xeParent, int iThreadID)

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

Before making calls to the NEResolver API the object must be conditioned, the following describe the
steps that must be followed to prepare the object for use.

Firstly call the SetDomRefServer method passing it the name of the Domino server that will be used to
interrogate the Domino Directory.

Secondly establish a bound LDAP session with an AD LDAP server and pass the LDAP session handle
to the object using a call to the setLDAPSessionHandle method.

Last make a call to the setLDAPBaseDN method in order to set the base Distinguished Name that will be
used in LDAP searches of the AD directory.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 45 of 81

3.14.1.2 setDomRefServer Method

BOOL setDomRefServer(char *szServer)

Name Type Use

szServer char * Pointer to a null terminated character string that contains the
abbreviated name of the Domino server that will be used to
perform directory lookups.

A call to this function will set the Domino server that is to be used for directory lookups. The function will
return TRUE if the server is acceptable and FALSE if not. This must be done before attempting to resolve
any identities with the resolver.

3.14.1.3 setLDAPSessionHandle Method

void setLDAPSessionHandle(LDAP *hlsSet)

Name Type Use

hlsSet LDAP * A valid pointer to an LDAP instance that is already bound to an
LDAP AD Server.

Use this method to pass a valid, bound LDAP session handle into the NEResolver. This must be done
before attempting to resolve any identities with the resolver.

3.14.1.4 setLDAPBaseDN Method

BOOL setLDAPBaseDN(char *szDN)

Name Type Use

szDN char * Pointer to a null terminated character string that contains the
distinguished name that is to be used as the search base for
queries in the Active Directory.

Use this method to set the Base DN that will be used for searches in AD. It is possible to set wildcards
for particular level(s) in the hierarchy using this call. Wildcards are not permitted in the Base DN
according to LDAP standards and implementations, the resolver implements code that permits wildcards
to be used. Setting the Base DN must be done before attempting to resolve any identities with the
resolver.

3.14.1.5 getLDAPSessionHandle Method

LDAP *getLDAPSessionHandle(void)

This function will return the pointer to the LDAP instance (session handle) that is in use by the
NEResolver object.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 46 of 81

3.14.1.6 getAffinity Method

int getAffinity(char *szAID, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Calls to the getAffinity method pass an arbitrary identity and returns an integer that defines the name
space affinity of the identity that was passed. The following symbolic values define the possible values for
the affinity.

 NE_ID_EMPTY – The identity string is empty, does not contain an identity.

 NE_ID_UNRESOLVED - The identity cannot yet be determined for this identity.

 NE_ID_DOMINO – The identity passed is a valid Domino identity.

 NE_ID_AD – The identity passed is a valid Active Directory identity.

 NE_ID_EMAIL – The identity passed is a valid SMTP e-Mail address, this implies that it may be

resolvable in both the Domino and the AD name spaces.

 NE_ID_UNRESOLVEABLE – It is not possible to resolve an affinity for the passed identity.

3.14.1.7 getDomDN Method

int getDomDN(char *szAID, char *szDomDN, int iDomDNSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szDomDN char * A pointer to a buffer that will receive the Domino
Distinguished Name that applies to the entity with the
identity passed to the call.

iDomDNSize int The size of the buffer that is to receive the Domino DN.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the Domino name space and return the Domino Distinguished Name. The call will return
one of the following values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 47 of 81

 NERET_RESOLVED – The identity was fully resolved the Domino DN is valid.

 NERET_NOTFOUND – No Domino identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.8 getDomAN Method

int getDomAN(char *szAID, char *szDomAN, int iDomANSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szDomAN char * A pointer to a buffer that will receive the Domino
Abbreviated Name that applies to the entity with the identity
passed to the call.

iDomANSize int The size of the buffer that is to receive the Domino
abbreviated name.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the Domino name space and return the Domino Abbreviated Name. The call will return one
of the following values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the Domino Abbreviated Name is valid.

 NERET_NOTFOUND – No Domino identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.9 getDomCN Method

int getDomCN(char *szAID, char *szDomCN, int iDomCNSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szDomCN char * A pointer to a buffer that will receive the Domino Common
Name that applies to the entity with the identity passed to
the call.

iDomCNSize int The size of the buffer that is to receive the Domino common
name.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 48 of 81

of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the Domino name space and return the Domino Common Name. The call will return one of
the following values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the Domino Common Name is valid.

 NERET_NOTFOUND – No Domino identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.10 getADDN Method

int getADDN(char *szAID, char *szADDN, int iADDNSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szADDN char * A pointer to a buffer that will receive the AD Distinguished
Name that applies to the entity with the identity passed to
the call.

iADDNSize int The size of the buffer that is to receive the AD DN.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the AD name space and return the AD Distinguished Name. The call will return one of the
following values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the AD DN is valid.

 NERET_NOTFOUND – No AD identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.11 getADCN Method

int getADCN(char *szAID, char *szADCN, int iADCNSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szADCN char * A pointer to a buffer that will receive the AD Common Name
that applies to the entity with the identity passed to the call.

iADCNSize int The size of the buffer that is to receive the AD CN.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 49 of 81

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the AD name space and return the AD Common Name. The call will return one of the
following values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the AD CN is valid.

 NERET_NOTFOUND – No AD identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.12 getADUID Method

int getADUID(char *szAID, char *szADUID, int iADUIDSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szADUID char * A pointer to a buffer that will receive the AD UID that applies
to the entity with the identity passed to the call.

iADUIDSize int The size of the buffer that is to receive the AD UID.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the AD name space and return the AD UID. The call will return one of the following values
indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the AD UID is valid.

 NERET_NOTFOUND – No AD identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.13 getADLogin Method

int getADLogin(char *szAID, char *szADCN, int iADCNSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szADLogin char * A pointer to a buffer that will receive the AD Login Name that
applies to the entity with the identity passed to the call.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 50 of 81

iADLoginSize int The size of the buffer that is to receive the AD Login Name.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the AD name space and return the AD Login Name. The call will return one of the following
values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the AD Login Name is valid.

 NERET_NOTFOUND – No AD identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.14 getEmailAddress Method

int getEmailAddress(char *szAID, char *szEMAIL, int iEMSize, int iThreadID)

Name Type Use

szAID char * A pointer to a null terminated character string that contains
an arbitrary Domino or AD identity.

szEMAIL char * A pointer to a buffer that will receive the Email address that
applies to the entity with the identity passed to the call.

iEMAILSize int The size of the buffer that is to receive the Email address.

iThreadID int For single threaded applications always specify 0 to indicate
the main thread of a program otherwise specify the number
of the thread that is making the call.

Given an arbitrary identity passed to the call the method will attempt to resolve the identity either directly
or indirectly in the AD and or Domino name spaces and return the SMTP Email address. The call will
return one of the following values indicating the result of the call.

 NERET_INVPARM – Invalid parameters were passed to the call, nothing was resolved.

 NERET_RESOLVED – The identity was fully resolved the Email address is valid.

 NERET_NOTFOUND – No AD or Domino identity could be found for the supplied identity.

 NERET_UNRESOLVED – The passed identity could not be resolved.

3.14.1.15 ShowDuplicates Member

The BOOL ShowDuplicates member of the class can be set to TRUE which will cause the NEResolver to
show messages if duplicate keys are encountered during the resolution process. The resolver will NOT
resolve any entity that matches duplicate keys anywhere on the resolution path.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 51 of 81

3.14.2 Usage Notes

Refer to the Person Look Up (PLU) application for an example of deploying the NEResolver in a live
application setting.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 52 of 81

4. Supporting Classes
This section describes the different states that a transaction moves through during normal operation and
fault handling.

4.1 CopyRequest Class

Header File: DXCommon/DBC/CopyRequest.h

The CopyRequest class is used to pass information to a DbCopier object, the information controls theee
copying of a single Notes database.

4.1.1 API

4.1.1.1 Constructor

CopyRequest(void)

4.1.1.2 PermitRun Member

BOOL PermitRun

The RunPermit must be set to TRUE, if it is set to FALSE at any point during the execution of a copy
operation then the DbCopier will immediately terminate the copy operation. This mechanism can be used
in asynchronous copy operations to abort a copy operation.

4.1.1.3 bAllowProxyFolderMessages Member

BOOL bAllowProxyFolderMessages

If set to TRUE then the DbCopier will pass all messages that are generated during Folder maintenance
operations through the ProxyLogMessage interfacte. The ProxyLogMessage interface allows applications
to intercept log messages that are generated by the DbCopier.

4.1.1.4 ReturnCode Member

int ReturnCode

The ReturnCode member will contain a value indicating the completion status of the requested copy
operation. The status can be any one of the following values.

 RETURN_NOERROR – The request was completed without any errors.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 53 of 81

 RETURN_CWARN – The request was completed but one or more warning messages were issued.

 RETURN_CERR - The request was completed but one or more errors were encountered.

 RETURN_INCOMPLETE – The request could not be completed.

4.1.1.5 AllowRetry Member

BOOL AllowRetry

The AllowRetry member is used to indicate if (TRUE) a request can be retried if it fails. The retry
mechanism must be implemented by the application that invokes the DbCopier, the application should
maintain the RetryCount member incrementing it from zero for each time that a request is retried, this
mechanism is implemented by default if using the DX TransactionHandler. The DbCopier will recognise a
request that is being re-tried and will execute any pre-processing steps that are indicated in the
RestartActions member of the request.

4.1.1.6 RestartActions Member

int RestartActions

If a request is being retried (indicated by a non-zero value in the RetryCount) then this member will
indicate one or more actions that should be undertaken prior to performing the copy operation. The field
can contain any of the following values that may be combined using OR.

 RESTART_DEL_TARGET – Delete the target database if it exists.

 RESTART_ASSERT_FIXUP – Force a fixup of the source database before copying.

4.1.1.7 PreProcessActions Member

int PreProcessActions

This member may be set to a value of PRESTART_DEL_TARGET to cause the DbCopier to delete the

target database before performing the copy operation.

4.1.1.8 FaultTolerance Member

int FaultTolerance

The FaultTolerance member may be set to one or more of the following values, the values indicate
particular anomalous processing conditions that will be treated as warnings rather than errors that would
cause the request to be terminated. Multiple values can be combined using OR.

 ALLOW_FOLDER_ERRORS – Errors during folder maintenance will be treated as warnings.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 54 of 81

 ALLOW_ACCESS_ERRORS – If the DbCopier does not have read access to individual documents

then the copy operation will proceed and drop these documents with a warning.

 ALLOW_COPY_ERRORS – If an error is encountered while copying an individual document the

copy operation will continue, use this setting to drop corrupt documents.

 RECOVER_RSRC_ERRORS – this setting allows the DbCopier to attempt an automated recovery

from problems that result from a shortage of resources.

4.1.1.9 CopyReplica Member

BOOL CopyReplica

Set the CopyReplica to TRUE to cause the target database to be a replica copy of the source database.
Set it to FALSE to create a non-replica copy.

4.1.1.10 CopyStubs Member

BOOL CopyStubs

Set the CopyStubs member to TRUE to cause deletion stubs encountered in the source database to be
copied to the target database, this setting is normally only useful when creating a replica copy. Set the
value to FALSE to have the DbCopier skip over any deletion stubs in the source database.

4.1.1.11 CopyPrivates Member

BOOL CopyPrivates

Set the CopyPrivates member to TRUE to have the DbCopier attempt to copy any private design
elements encountered in the source database to the target database. Set the value to FALSE to have the
DbCopier skip over any private design elements encountered in the source.

4.1.1.12 RefreshDesign Member

BOOL RefreshDesign

Set this member to TRUE to have the DbCopier force a design refresh of the target database after the
copying operations are completed. It is possible to have the copier set a new template name that will be
used for the design refresh. The corresponding template database must be in place on the target server
for this operation to succeed. Set the value to FALSE if no refresh is required.

4.1.1.13 CopyFTI Member

BOOL CopyFTI

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 55 of 81

Set this member to TRUE to have the DbCopier copy any full text index settings on the source database
to the target database, the Full Text Index will not be built on the target database this will be done by the
normal Index Maintenance processes on the target server. Set the value to false to ignore any full text
index settings.

4.1.1.14 CopyAndBuildFTI Member

BOOL CopyAndBuildFTI

Set this member to TRUE to have the DbCopier copy any full text index settings on the source database
to the target database and immediately build the Full Text Index, otherwise set the value to FALSE.

4.1.1.15 BuildIndexes Member

BOOL BuildIndexes

Set this member to TRUE to cause the DbCopier to build all of the view indexes in the target database
after performing the copy operations, otherwise set the value to FALSE.

4.1.1.16 EnableTXLogging Member

BOOL EnableTXLogging

Set this member to TRUE to have the DbCopier enable Transaction Logging on the target database.

Set the value to FALSE to have Transaction Logging remain disabled after the copy completes.

4.1.1.17 ConsistentACLOff Member

BOOL ConsistentACLOff

Set this member to TRUE to have the DbCopier turn off the Enforce Consistent ACL property in the target
database. Set the value to FALSE to leave the setting as it was copied from the source database.

4.1.1.18 CopyFolders Member

BOOL CopyFolders

This setting only applies to non-replica copies, if set to TRUE it will cause the DbCopier to populate the
folders of the target database with the same content as the corresponding folders in the source database.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 56 of 81

Set the value to FALSE to leave the folders in the target database unpopulated. Folder content is always
populated during a replica copy operation.

4.1.1.19 ForceFixup Member

BOOL ForceFixup

Setting this member to TRUE will cause the DbCopier to perform a fixup on the source database before
performing the copy operations. Set the value to FALSE if no fixup is required.

4.1.1.20 DisableAgents Member

BOOL DisableAgents

Set this member to TRUE to prevent scheduled agents from being executed in the target database. The
setting does not disable individual agents instead it turns off the database level property that is used by
the agent manager to determine if it should schedule agents in the database, when set off the Agent
Manager effectively ignores the database. Set the value to FALSE to allow any scheduled agents in the
target database to be executed by the Agent Manager, providing that the agent signer can execute
agents on the target server.

4.1.1.21 OneTimeReplicate Member

BOOL OneTimeReplicate

This setting only applies to replica copy operations. If the value is set to TRUE then once the copy
operations have completed the DbCopier will perform a one-time replication between the source and
target database. Set the value to FALSE if the replication is not required.

4.1.1.22 szTransID Member

char szTransID[MAX_DATABASE + 1]

This member can be set to an arbitrary null terminated character string. The DbCopier will only use this
value for reporting purposes.

4.1.1.23 szSourceServer Member

char szSourceServer[MAX_SERVER + 1]

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 57 of 81

Set this member to a null terminated character string containing the abbreviated name of the server
where the source database can be found. Set the string to “Local” or the empty string “” if the source
database is on the same server where the application is running.

4.1.1.24 szSourceDatabase Member

char szSourceDatabase[MAX_DATABASE + 1]

Set this member to a null terminated character string containing the name of the source database
(relative to the Notes Data Directory).

4.1.1.25 szSourceDBReplicaID Member

char szSourceDBReplicaID[MAX_DESC + 1]

This member can optionally be set to a null terminated character string containing a character
representation of the Replica ID of the source database. If a value is present then the DbCopier will
perform a check that the source database has a Replica ID that matches the value provided, if the values
do not match then the transaction is failed.

4.1.1.26 szTargetServer Member

char szTargetServer[MAX_SERVER + 1]

Set this member to a null terminated character string containing the abbreviated name of the server
where the target database will be placed. Set the string to “Local” or the empty string “” if the target
database will be on the same server where the application is running.

4.1.1.27 szTargetDatabase Member

char szTargetDatabase[MAX_DATABASE + 1]

Set this member to a null terminated character string containing the name of the target database
(relative to the Notes Data Directory).

4.1.1.28 szGroupToAdd Member

char szGroupToAdd[MAX_GROUP + 1]

This member can optionally be set to a null terminated character string containing the name of a group
that will be added to the ACL of the target database. The group will be added as a mixed group with
Manager access, all rights enabled and all Roles that exist in the ACL will be asserted.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 58 of 81

4.1.1.29 szTemplateName Member

char szTemplateName[MAX_TEMPLATE + 1]

This member can optionally be set to a null terminated character string containing a Design Template
name from which the target database will inherit design. A design refresh can be enforced with the new
template by setting the RefreshDesign member to TRUE, otherwise the design will be updated by the
Design Task if it is running on the target server.

4.1.1.30 szAgentName Member

char szAgentName[MAX_ELEMENT + 1]

This member can optionally be set to a null terminated character string containing the name of an agent
in the target database, if a value is present then the DbCopier will run the agent after all copy operations
have completed. The agent can be used to “condition” documents in the target database after it has been
copied performing such operations as changing name lists in readers and authors fields.

4.1.1.31 Processing Statistics Members

The following members are exposed to give applications access to statistical information about copy
performance.

 DWORD dwDataDocsCopied – Count of data documents copied.

 DWORD dwDataStubsCopied – Count of data deletion stubs copied.

 DWORD dwDataAccessErrors – Count of documents in the source database that the copier

did not have reader access to.

 DWORD dwDataOtherErrors – Count of notes that reported an error while being copied.

 DWORD dwDataRetries – Count of note copy operations that were retried.

 DWORD dwDesignDocsCopied – Count of design documents copied.

 DWORD dwDesignStubsCopied – Count of design deletion stubs copied.

 DWORD dwDesignAccessErrors – Count of design documents in the source database that

the copier did not have reader access to.

 DWORD dwDesignOtherErrors – Count of design notes that reported an error while being

copied.

 DWORD dwDesignRetries – Count of design note copy operations that were retried.

 DWORD dwCopyPhaseElapsed – Elapsed time of the copy phase of processing in seconds.

 DWORD dwFoldersCopied – The number of folders maintained.

 DWORD dwFolderDocs – The total number of documents that were added to all folders.

 DWORD dwFolderPhaseElapsed – The elapsed time for folder (and FTI) processing in

seconds.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 59 of 81

 DWORD dwDesignPhaseElapsed – The elapsed time spent doing design refresh.

 DWORD dwAgentPhaseElapsed – The elapsed time spent running the agent.

 DWORD dwIndexPhaseElapsed – The elapsed time spent building view indexes.

 DWORD dwReplPhaseElapsed – The elapsed time spent replicating the database.

 DWORD dwTotalElapsed – The total elapsed time spent on copy processing in seconds.

 DWORD dwSizeKB – The final size of the target database in Kb.

4.1.2 Usage Notes

To invoke a copy operation asynchronously on a DbCopier object follow the steps below.

1) Create a CopyRequest object and populate it with the parameters needed for the copy operation.

2) Create a PartCopyRequest object and set the address of the CopyRequest object in the “Parent”
member and set the “CopyAction” member to “COPY_DATABASE”.

3) Use the “PostARequest” method on the runtime object to dispatch the “PartCopyRequest”
message to the DbCopier.

4.2 PartCopyRequest Class

Header File: DXCommon/DBC/PartCopyRequest.h

The PartCopyRequest class is mainly used by the DbCopier call to initiate and control the asynchronous
copy micro-operation that are used during a database copy operation. Applications would only use the
class to create an object to asynchronously initiate a copy operation.

4.2.1 API

4.2.1.1 Constructor

PartCopyRequest(CopyRequest *crOriginator)

Name Type Use

crOriginator CopyRequest * Pointer to the CopyRequest object that is the parent of this
PartCopyRequest.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 60 of 81

4.2.1.2 Parent Member

CopyRequest *Parent

This member holds the address of the parent CopyRequest object that is supplied to the constructor.

4.2.1.3 pcrqCopyDesign Member

PartCopyRequest *pcrqCopyDesign

If this PartCopyRequest is a request to copy design notes from the source to the target database then this
member contains the address of the intermediate PartCopyRequest for copying the design.

4.2.1.4 pcrqCopyData Member

PartCopyRequest *pcrqCopyData

If this PartCopyRequest is a request to copy data notes from the source to the target database then this
member contains the address of the intermediate PartCopyRequest for copying the data.

4.2.1.5 dbcCopier Member

void *dbcCopier

This member contains the address of the DbCopier object that is performing the copy.

4.2.1.6 CopyAction Member

int CopyAction

This member contains the action that is to be carried out by the DbCopier when it receives this request,
actions may be any of the following symbolic values.

 COPY_DATABASE – This request carries a top level copy request that should now be executed.

 COPY_DESIGN - The request is to copy the complete database design.

 COPY_DESIGN_NOTES – The request is to copy a number of individual design notes.

 COPY_DATA – The request is to copy all of the data documents in the database.

 COPY_DATA_NOTES – The request is to copy a number of individual data notes.

 COPY_MAINTAIN_FOLDERS – The request is to maintain all of the folders in the target database.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 61 of 81

 COPY_MAINTAIN_FOLDER - The request is to maintain the contents of a single folder.

 COPY_FTI – The request is to copy the Full Text Index definition and optionally build the index.

 UPGRADE_DESIGN – The request is to update the design of the target database.

 COPY_BUILD_INDEXES – The request is to build all of the view indexes in the target database.

 COPY_BUILD_INDEX – The request is to build an individual view index in the target database.

 RUN_AGENT - The request is to run an agent in the target database.

4.2.1.7 CompletionStatus Member

int CompletionStatus

This member contains the completion status of the request, after processing. The status can be any of
the following symbolic values.

 ACTION_COMPLETED – The request was completed successfully.

 ACTION_INPROGRESS – The request is currently being executed.

 ACTION_WARN – The request was completed but one or more warnings were issued.

 ACTION_FAILED – The request has failed.

 ACTION_RECOVER – The request has failed but recovery should be possible.

 ACTION_ABORT – The request has failed all other requests should be quenched or discarded

and the top level copy request should be marked in error.

4.2.1.8 iProcThread Member

int iProcThread

This member contains the identity of the thread that is or was processing the request.

4.2.1.9 nidToCopy Array

NOTEID nidToCopy[COPY_NOTE_MULTIPLEX]

For operations that copy notes this member contains the array of Note IDs that are to be copied, the
count of notes in the array is contained in the CopyNoteCount member.

4.2.1.10 CopyNoteCount Member

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 62 of 81

int CopyNoteCount

This member contains the count of Note IDs in the nidToCopy array.

4.3 MoveRequest Class

Header File: DXCommon/DBC/MoveRequest.h

The MoveRequest class is used to pass information that controls the operation of a Database Mover
(DbMover) engine.

The DbMover engine was originally developed to solve the problem of redistributing notes databases
across multiple storage volumes without shutting down the Domino server or limiting the use of databases
while they are being moved between storage volumes. Having addressed the problem of storage
redistribution it was noted that DbMover had other capabilities such as creating media backups and
deleting databases already plumbed in and so minor code changes turned it into a more generic Notes
database storage management tool.

The DbMover engine recognises three primitive actions that can be combined in different ways to
accomplish different tasks. The primitive actions are Copy (C) which makes an online copy of an open
(transaction logged) database, Delete (D) which deletes a database while it is online and Link (L) which
creates a database link in place of the original database pointing to a new storage location (which can be
outside of scope of the Notes Data Directory).

4.3.1 API

4.3.1.1 Constructor

MoveRequest(void)

4.3.1.2 PermitRun Member

BOOL PermitRun

The RunPermit must be set to TRUE, if it is set to FALSE at any point during the execution of a move
operation then the DbMover will immediately terminate the move operation. This mechanism can be used
in asynchronous move operations to abort the operation.

4.3.1.3 ReturnCode Member

int ReturnCode

The ReturnCode member will contain a value indicating the completion status of the requested move
operation. The status can be any one of the following values.

 RETURN_NOERROR – The request was completed without any errors.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 63 of 81

 RETURN_CWARN – The request was completed but one or more warning messages were issued.

 RETURN_CERR - The request was completed but one or more errors were encountered.

 RETURN_INCOMPLETE – The request could not be completed.

4.3.1.4 AllowRetry Member

BOOL AllowRetry

The AllowRetry member is used to indicate if (TRUE) a request can be retried if it fails. The retry
mechanism must be implemented by the application that invokes the DbMover, the application should
maintain the RetryCount member incrementing it from zero for each time that a request is retried, this
mechanism is implemented by default if using the DX TransactionHandler.

4.3.1.5 CopyBfrKb Member

UINT CopyBfrKb

If the request is for an operation that includes a copy action then this member will be used to determine
the size of the read/write buffer that will be used for the copy process I/O.

4.3.1.6 PerformCopy Member

BOOL PerformCopy

Set this member to TRUE if this request includes a copy operation, otherwise set to FALSE.

4.3.1.7 PerformDelete Member

BOOL PerformDelete

Set this member to TRUE if this request includes a delete operation otherwise set to FALSE.

4.3.1.8 PerformLink Member

BOOL PerformLink

Set this member to TRUE if this request includes a link operation otherwise set to FALSE.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 64 of 81

4.3.1.9 szTransID Member

char szTransID[MAX_DATABASE + 1]

This member can be set to an arbitrary null terminated character string. The DbMover will only use this
value for reporting purposes.

4.3.1.10 szSourceDatabase Member

char szSourceDatabase[MAX_DATABASE + 1]

Set this member to a null terminated character string containing the name of the source database
(relative to the Notes Data Directory).

4.3.1.11 szTargetDir Member

char szTargetDir[MAX_DATABASE + 1]

This member is only applicable to requests that contain a Copy or Link action. Set the member to a null
terminated string containing the name of the directory to which the copy will be made.

4.3.1.12 Processing Statistics Members

The following members are exposed to applications to provide some feedback on the performance of
DbMover operations.

 DWORD dwDataDocsCopied – Count of data documents in the database being processed.

 DWORD dwTotalElapsed – The elapsed time of the DbMover operation in seconds.

 DWORD dwSizeKB – The size (in Kb) or the database being processed.

4.3.2 Usage Notes

To invoke a Mover operation asynchronously on a DbMover object follow the steps below.

1) Create a MoveRequest object and populate it with the parameters needed for the operation.

2) Create a PartMoveRequest object and set the address of the MoveRequest object in the “Parent”
member and set the “MoveAction” member to “MOVE_DATABASE”.

Use the “PostARequest” method on the runtime object to dispatch the “PartMoveRequest” message to
the DbMover.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 65 of 81

4.4 PartMoveRequest Class

Header File: DXCommon/DBC/PartMoveRequest.h

The PartMoveRequest class is mainly used by the DbMover call to initiate and control the asynchronous
micro-operation that are used during a database move operation. Applications would only use the class to
create an object to asynchronously initiate a move operation.

4.4.1 API

4.4.1.1 Constructor

PartMoveRequest(MoveRequest *mrOriginator)

Name Type Use

mrOriginator MoveRequest * Pointer to theMoveRequest object that is the parent of this
PartMoveRequest.

4.4.1.2 Parent Member

MoveRequest *Parent

This member holds the address of the parent MoveRequest object that is supplied to the constructor.

4.4.1.3 dbmMover Member

void *dbmMover

This member contains the address of the DbMover object that is performing the move.

4.4.1.4 MoveAction Member

int MoveAction

This member contains the action that is to be carried out by the DbMover when it receives this request,
actions may be any of the following symbolic values.

 MOVE_DATABASE – This request carries a top level move request that should now be executed.

4.4.1.5 CompletionStatus Member

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 66 of 81

int CompletionStatus

This member contains the completion status of the request, after processing. The status can be any of
the following symbolic values.

 ACTION_COMPLETED – The request was completed successfully.

 ACTION_INPROGRESS – The request is currently being executed.

 ACTION_WARN – The request was completed but one or more warnings were issued.

 ACTION_FAILED – The request has failed.

 ACTION_ABORT – The request has failed all other requests should be quenched or discarded

and the top level copy request should be marked in error.

4.4.2 Usage Notes

To invoke a Mover operation asynchronously on a DbMover object follow the steps below.

1) Create a MoveRequest object and populate it with the parameters needed for the operation.

2) Create a PartMoveRequest object and set the address of the MoveRequest object in the “Parent”
member and set the “MoveAction” member to “MOVE_DATABASE”.

Use the “PostARequest” method on the runtime object to dispatch the “PartMoveRequest” message to
the DbMover.

4.5 ModRequest Class

Header File: DXCommon/DBP/ModRequest.h

The ModRequest class is used to pass requests for Database Property changes to a DbModifier engine.

4.5.1 API

4.5.1.1 Constructor

ModRequest(void)

4.5.1.2 PermitRun Member

BOOL PermitRun

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 67 of 81

The RunPermit must be set to TRUE, if it is set to FALSE at any point during the execution of a modify
operation then the DbModifier will immediately terminate the modify operation. This mechanism can be
used in asynchronous modify operations to abort a modify operation.

4.5.1.3 hDbSrc Member

DBHANDLE hDBSrc

The hDbSrc member contains the database handle of the database that is to be modified.

4.5.1.4 ReturnCode Member

int ReturnCode

The ReturnCode member will contain a value indicating the completion status of the requested modify
operation. The status can be any one of the following values.

 RETURN_NOERROR – The request was completed without any errors.

 RETURN_CWARN – The request was completed but one or more warning messages were issued.

 RETURN_CERR - The request was completed but one or more errors were encountered.

 RETURN_INCOMPLETE – The request could not be completed.

4.5.1.5 AllowRetry Member

BOOL AllowRetry

The AllowRetry member is used to indicate if (TRUE) a request can be retried if it fails. The retry
mechanism must be implemented by the application that invokes the DbModifier, the application should
maintain the RetryCount member incrementing it from zero for each time that a request is retried, this
mechanism is implemented by default if using the DX TransactionHandler.

4.5.1.6 dwPropsToMod Member

DWORD dwPropsToMod

The dwPropsToMod is set to a mask of bits indicating which properties are to be modified by this request,
the mask is constructed by ORing together any combination of the following values.

 MOD_PROP_FTI – Modify the Full Text Index settings.

 MOD_PROP_BGA – Modify the Background Agents property.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 68 of 81

 MOD_PROP_CAL – Modify the Calendar property.

 MOD_PROP_REPT – Modify the Disable Replication (Temporarily) property.

 MOD_PROP_REPP – Modify the Disable Replication (Permanently) property.

 MOD_PROP_BROWSE – Modify the Database can be Browsed property.

 MOD_PROP_CAT – Modify the the show database in catalog property.

 MOD_PROP_TXL – Modify the Database is Transaction Logged property.

 MOD_PROP_CACL – Modify the Enforce Consistent ACL property.

 MOD_PROP_MIA – Modify the Maximum Internet Access Level property.

 MOD_PROP_TPLT – Modify the Template name that the database inherits design from.

 MOD_PROP_QUOTA – Modify the Database Quota settings.

4.5.1.7 dwPropSettings Member

DWORD dwPropSetting

The dwPropSettings member contains the ON or OFF value for the property settings that are binary, any
of the following values can be combined using OR. If a particular bit in the member is ON then the
corresponding property is set on.

 MOD_PROP_FTI – If ON the database has a Full Text Index if OFF then it does not. This

modifies the DBOPTION_FT_INDEX database property.

 MOD_PROP_BGA – If ON then background agents will be executed in the database if OFF then

they will not. This modifies the REPLFLG_NO_CHRONOS setting in the replication flags.

 MOD_PROP_CAL – If ON then the database will be marked as containing a claendar and hence

will be processed by the schedule manager, if OFF then it will not. This modifies the
DBOPTION_HAS_CALENDAR database property.

 MOD_PROP_REPT – If ON the replication will be disabled in the database, this setting is

temporary and can be set back on from the client. If off the replication is enabled. This modifies
the REPLFLG_DISABLE setting in the replication flags.

 MOD_PROP_REPP – If ON then replication will be disabled in the database, this setting cannot be

modified from the client. If OFF then replication will be enabled. This modifies the
REPLFLG_NEVER_REPLICATE setting in the replication flags.

 MOD_PROP_BROWSE – If ON then the database will not be browsable. If OFF then the database

will be browsable. This modifies the REPLFLG_DO_NOT_BROWSE setting in the replication
flags.

 MOD_PROP_CAT – If ON then the database will not be listed in the database catalog, if OFF then

the database will be listed in the catalog. This modifies the REPLFLG_DO_NOT_CATALOG
setting in the replication flags.

 MOD_PROP_TXL – If ON the the database will be Transaction Logged, if OFF then the database

will not be transaction logged.

 MOD_PROP_CACL – If On then consistent ACL will be enforced across all replicas of the

database, if OFF it will not be enforced. This modifies the DBOPTION_UNIFORM_ACCESS
database property.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 69 of 81

4.5.1.8 MaxInternetAccess Member

WORD MaxInternetAccess

This member determines the maximum internet access level set for the database. Set this to one of the
valid ACL_LEVEL_xxx symbolic values (see Notes API documentation).

4.5.1.9 QuotaWarn Member

DWORD QuotaWarn

The QuotaWarn member is used to set the database warning threshold level in the database. The value
is specified in Kb units.

4.5.1.10 QuotaLimit Member

DWORD QuotaLimit

The QuotaLimit Member is used to set the database quota limit for the database. The value is specified in
Kb units.

4.5.1.11 szTransID Member

char szTransID[MAX_DATABASE + 1]

This member can be set to an arbitrary null terminated character string. The DbModifier will only use this
value for reporting purposes.

4.5.1.12 szSourceServer Member

char szSourceServer[MAX_SERVER + 1]

Set this member to a null terminated character string containing the abbreviated name of the server
where the source database can be found. Set the string to “Local” or the empty string “” if the source
database is on the same server where the application is running.

4.5.1.13 szSourceDatabase Member

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 70 of 81

char szSourceDatabase[MAX_DATABASE + 1]

Set this member to a null terminated character string containing the name of the source database
(relative to the Notes Data Directory).

4.5.1.14 szTemplateName Member

char szTemplateName[MAX_TEMPLATE + 1]

This member can optionally be set to a null terminated character string containing a Design Template
name from which the target database will inherit design. The design will be updated by the Design Task if
it is running on the source server.

4.6 DXACLRule Class

Header File: DXCommon/ACL/DXACLRule.h

The DXACLRule class is used to contain information about a single rule that is used to determine the
conformance of individual ACL entries.

4.6.1 API

4.6.1.1 Constructor

DXACLRule(ExecEnvironment *xeParent, int iThreadID)

Name Type Use

xeParent ExecEnvironment * Pointer to the current runtime object

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is creating the object.

4.6.1.2 matchEntry Method

BOOL matchEntry(char *szEntry, WORD wFlags, int iThreadID)

Name Type Use

szEntry char* Pointer to a null terminated character string containing the

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 71 of 81

name from an ACL entry.

wFlags WORD The ACL flags that apply to the entry being matched.

iThreadID int For single threaded applications always specify 0 to indicate the
main thread of a program otherwise specify the number of the
thread that is making the call.

The matchEntry method takes information from an ACL entry and determines if current ACL rule matches
the information passed. The method returns TRUE if the entry matches and FALSE if it does not.

4.6.1.3 checkSettings Method

int checkSettings(WORD wAccessLevel, ACL_PRIVILEGES *apEntry, WORD wAccessFlags,

int iThreadID)

The checkSettings method will take the settings from an ACL entry and determine if they match the
settings specified by the current Rule.

The method will return zero if the settings fully conform to the Rule. If the entry does not conform then the
return value will be a composite of any of the following bit settings.

 PS_ACTION_MOD_LEVEL – The ACL Access level needs to be modified to conform.

 PS_ACTION_MOD_PRIVS – The ACL Roles need to be modified to conform.

 PS_ACTION_MOD_FLAGS – The ACL flag settings need to be modified to conform.

4.7 DXNoteScanReq Class

Header File: DXCommon/DX/DXNoteScanReq.h

Header File: DXCommon/MTDX/DXNoteScanReq.h

The DXNoteScanReq class is used to create objects that pass scanning requests to a DXNoteScanner
database scanning engine.

4.7.1 API

4.7.1.1 Constructor

DXNoteScanReq(DXNoteScanTable *nstToUse, int iThreadID)

Name Type Use

nstToUse DXNoteScanTable* Pointer to a populated DXNoteScanTable.

iThreadID int For single threaded applications always specify 0 to indicate the

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 72 of 81

main thread of a program otherwise specify the number of the
thread that is making the call.

The DXNoteScan table is a structure that contains the search requirements and the output members for
up to 10 simultaneous searches. The table is made up as follows.

typedef struct {

 DXNoteScanEntry dxnsEntry[MAX_SEARCH_ENTRIES]; // Array of

DXNoteScanEntry objects

} DXNoteScanTable;

Each entry has the following content.

typedef struct {

 DHANDLE hitMatches;

 // Handle of IDTable containing matches for this search

 WORD wNoteClass;

 // Note classes to scan for

 DWORD dwSearchFlags;

 // Search Flags... see FLAG_NOTE_SCAN_xxx

 char szSearchString[MAX_SEARCH_STRING]; // Search

string to be used for this search

 DWORD dwCount;

 // Number of noteids added to IDTable

} DXNoteScanEntry;

The values should be set as follows.

4.7.1.1.1 DHANDLE hitMatches Member

This member can optionally be set to the handle of an ID Table constructed by the caller, if set to
NULLHANDLE then the scanner will construct the ID Table for the caller.

4.7.1.1.2 WORD wNoteClass Member

This member should be set to the note classes that are to be retrieved. See the Notes API
NOTE_CLASS_XXX definition for possible values.

4.7.1.1.3 DWORD dwSearchFlags Member

This member can be set to indicate special characteristics of notes that should be searched for during this
scan. Any of the following values can be combined using OR to set this value. By default the value should
be set to zero.

 FLAG_NOTE_SCAN_OBJECT_FILE – Select notes that contain an attached file object.

 FLAG_NOTE_SCAN_OBJECT_OTHER – Select notes that have attachments other than files.

 FLAG_NOTE_SCAN_SIGNED – Select notes that are signed.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 73 of 81

 FLAG_NOTE_SCAN_ENCRYPTED – Select notes that are encrypted.

 FLAG_NOTE_SCAN_DELSTUBS – Select notes that are deletion stubs.

 FLAG_NOTE_SCAN_REPCONS – Select notes that are replication conflicts.

 FLAG_NOTE_SCAN_NOACCESS – Select notes to which the scanner does not have reader

access.

 FLAG_NOTE_SCAN_NOT_DELSTUB – Exclude notes that are deletion stubs.

4.7.1.1.4 Char szSearchString Member

This member can optionally specify a null terminated string containing a search string that specifies the
notes that are to be selected. The search string is combined with the Note Classes and any search flags
specified to determine the notes that will be selected.

4.7.1.1.5 DWORD dwCount Member

This member will be populated by the scanner with the number of Notes that matched the search criteria
and therefore have a NoteID in the ID Table.

4.7.1.2 hdbToScan Member

DBHANDLE hdbToScan

Set this member to the DBHANDLE of the database that is to be scanned. If this is not set then set the
server and database name members and the scanner will opan and close the database for the caller.

4.7.1.3 szServer Member

char szServer[MAXUSERNAME]

If the caller is not passing a DBHANDLE then this member should be set to a null terminated character
string containing the abbreviated name of the server that stores the database to be scanned. An empty
string of the value ”Local” can be used to indicate that the database resides on the server/workstation
where the scanner is executing.

4.7.1.4 szDbPath Member

char szDbPath[MAXPATH]

If the caller is not passing a DBHANDLE then this member should be set to a null terminated string
containing the path of the database that is to be scanned (relative to the Notes Data Directory).

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 74 of 81

4.7.1.5 dwMaxErrors Member

DWORD dwMaxErrors

Set this value to the maximum number of errors that may be encountered during the scan before the scan
is terminated.

4.7.1.6 ReturnCode Member

int ReturnCode

The ReturnCode member will contain a value indicating the completion status of the requested modify
operation. The status can be any one of the following values.

 RETURN_NOERROR – The request was completed without any errors.

 RETURN_CWARN – The request was completed but one or more warning messages were issued.

 RETURN_CERR - The request was completed but one or more errors were encountered.

 RETURN_INCOMPLETE – The request could not be completed.

4.7.1.7 Processing Statistics Members

The following members are exposed to provide insight into the processing generated by the scan that
was processed.

 dwNotesToScan – The number of notes returned by the base search.

 dwNotesScanned – The total number of notes scanned during processing.

 dwErrors – The number of errors encountered during the scanning process.

 dwElapsed – The elapsed time in seconds that the scan processing took.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 75 of 81

5. Appendixes

5.1 Appendix A: ACL Rule Set XML

The XML document supplied is a well-formed XML document that specifies, in a declarative style, what
rules the final ACL configuration must conform to.

There are four primary nodes in the XML document, note that all four are optional.

5.1.1 Sections

<AdminServer>

This node of the XML document will defines a single ACLRule that will be applied as the Admin Server in
the database ACL.

<CompulsoryEntries>

This node of the XML document will define entries that must appear in the final ACL (and what settings
they must have). ACL entries specified in this section will be added if they are missing or updated if they
are present so that their settings match those in the document.

<ForbiddenEntries>

This node of the XML document will define entries that must not appear in the final ACL. If present then
these entries will be removed. If an entry in this section conflicts with an entry in the compulsory or
permitted entries then this section takes precedence and the entry will be removed.

<PermittedEntries>

This node, if present, will specify entries (or more usually patterns of entries) that are allowed to be
present in the final ACL configuration. All entries in the ACL will be removed except entries that match
entries in this node or any entries in the <CompulsoryEntries> node. Entries that do match entries in
this node may have their settings adjusted to conform to the entries or patterns specified here.

5.1.2 Entries

Individual ACL entries or groups of ACL entries matching a specified pattern are identified with an
<ACLRule> node. An ACLRule node can optionally contains a number of <Option> nodes and/or a
number of <Role> nodes. An Option node represents the setting on or off of a single ACL flag. A Role
node associates the entry with membership or not of a specified ACL role.

5.1.2.1 ACLRule Node

The following attributes apply to an ACLRule Node.

5.1.2.1.1 Name Attribute

Either a Name attribute or a Pattern Attribute must be supplied on an ACLRule node. The name attribute
specifies a string containing an abbreviated name that will be matched to an entry in the ACL list. If the
name contains any “*” wildcards then these will be matched literally to the ACL entries, if you wish to do
wildcard matching then specify a pattern attribute in place of the name attribute. If the name matches an
entry in the ACL then the rest of the specification in the ACLRule will be applied to that entry. If the
ACLRule entry is in the AdminServer section of the ACL Rule Stet then the name can specify a symbolic

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 76 of 81

value of none, if this is specified then any entry in the ACL that is specified as the Admin Server will be
changed to a regular entry.

5.1.2.1.2 Pattern Attribute

Either a Name attribute or a Pattern Attribute must be supplied on an ACLRule node. The pattern attribute
specifies a string containing an abbreviated name with wildcards that will be matched to multiple entries in
the ACL list. If the pattern matches any entries in the ACL then the rest of the specification in the
ACLRule will be applied to those entries. ACLRule entries in the compulsory entries section of a rule set
CANNOT specify patterns.

5.1.2.1.3 Type Attribute

The type attribute specifies the type that should be set in any matching ACL entries. The type should
specify one of the following symbolic values.

 Person – A Person ACL entry.

 Server - A Server ACL entry.

 PersonGroup – A Person Group ACL entry.

 ServerGroup – A Server Group ACL entry.

 MixedGroup – A Mixed Group ACL entry.

 Unspecified – An Unspecified ACL entry.

5.1.2.1.4 Level Attribute

The level attribute specifies the access level that should be applied to any matching ACL entries. The
level should specify one of the following symbolic values.

 Manager – Specified Manager access level.

 Designer – Specifies Designer access level.

 Editor – Specifies Editor access level.

 Author – Specifies Author access level.

 Reader – Specifies Reader access level.

 Depositor – Specifies Depositor access level.

 NoAccess – Specifies No Access .

5.1.2.2 Option Node

An Option node represents a single ACL flag and determines if the flag should be set on or off on any
matching entries. The Option node has the following attributes.

5.1.2.2.1 Type Attribute

The type attribute identifies the specific ACL flag that should be set on or off. The type should specify one
of the following symbolic values.

 NoCreateDocs – If set on the user cannot create documents in the database.

 NoDeleteDocs – If set on the user cannot delete documents in the database.

 CreatePrivateAgents – If set on then the user is permitted to create private agents in the

database.

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 77 of 81

 CreatePrivateFolders – If set on then the user is permitted to create private views or

folders in the database.

 CreateFolders – If set on then the user is permitted to create public folders in the database.

 CreateLotusScript – If set on then the user is permitted to create LotusScript agents in the

database.

 PublicReader – If set on then the user has read access to pulic documents in the database.

 PublicWriter – If set on then the user has write access to pulic documents in the database.

 NoMonitors – If set on then the user cannot set monitors on the database.

 NoReplicate – If set on then the user cannot replicate or copy documents from the database.

5.1.2.2.2 Set Attribute

The set attribute specifies if the designated ACL flag should be set on or off. Specify one of the symbolic
values of on or off for this attribute.

5.1.2.3 Role Node

The Role node is used to assign or un-assign a particular ACL role to any matching ACL entries. The
Option node has the following attributes.

5.1.2.3.1 Name Attribute

The name attribute is used to identify the specific ACL Role that is to be assigned or un-assigned to the
ACL entries. The value may be specified as * to assign or un-assign all of the ACL Roles defined in the
database ACL.

5.1.2.3.2 Assign Attribute

The assign attribute determines if the specified role(s) should be assigned or un-assigned to any
matching ACL entries. Specify one of the symbolic values yes or no.

5.1.3 Example Rule Sets

This section presents a number of example ACL rules XML documents that would be used to accomplish
specific tasks in manipulating the ACL of databases.

5.1.3.1 Enforcing A Server Entry

The following XML document will make sure that there is a wildcard ACL entry for all servers in the
infrastructure and that particular settings apply to the entry if it already exists.

<?xml version='1.0' encoding='utf-8'?>

<-- Add a generic server entry -->

<ACLRuleSet>

 <CompulsoryEntries>

 <ACLRule Name="*/SERVER/ACME” Type=ServerGroup Level=Manager>

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 78 of 81

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes/>

 </ACLRule>

 </CompulsoryEntries>

</ACLRuleSet>

5.1.3.2 Removing Administrators from the ACL

The following XML document will remove any administrators that are listed explicitly in the ACL of any of
the databases being processed.

<?xml version='1.0' encoding='utf-8'?>

<-- Remove explicitly listed administrators from the ACL -->

<ACLRuleSet>

 <ForbiddenEntries>

 <ACLRule Pattern="*/ADMIN/ACME>

 </ACLRule>

 </ForbiddenEntries>

</ACLRuleSet>

5.1.3.3 Preparing Databases for Archiving

This is a more complex example that achieves a number of adjustments to the ACLs of databases in
preparation for archiving. Any Admin Server is removed. Archive administrative groups are added,
general entries are corrected or added as necessary. Normal administrators are removed. Personal
entries in the ACL are dropped to reader level access.

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE DXACL SYSTEM 'xmlschemas/domino_7_0.dtd'>

<ACLRuleSet>

 <AdminServer>

 <ACLRule Name=none Type=Server>

 </ACLRule>

 </AdminServer>

 <CompulsoryEntries>

 <ACLRule Name="*/SERVER/ACME" Type=ServerGroup Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes>

 </ACLRule>

 <ACLRule Name="LocalDomainServers" Type=ServerGroup

Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes>

 </ACLRule>

 <ACLRule Name="OtherDomainServers" Type=ServerGroup

Level=NoAccess>

 </ACLRule>

 <ACLRule Name="_4ArchiveAdministrators_Manager" Type=PersonGroup

Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes>

 </ACLRule>

 <ACLRule Name="-Default-" Type=Unspecified Level=NoAccess>

 <Option Type=PublicReader Set=Off>

 <Option Type=PublicWriter Set=Off>

 </ACLRule>

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 79 of 81

 <ACLRule Name="Anonymous" Type=Unspecified Level=NoAccess>

 </ACLRule>

 <ACLRule Name="_4ArchiveAccess_Users" Type=PersonGroup

Level=Reader>

 </ACLRule>

 </CompulsoryEntries>

 <ForbiddenEntries>

 <ACLRule Name="_4Operationsl_Admins"/>

 </ForbiddenEntries>

 <PermittedEntries>

 <ACLRule Pattern="*/*/ACME" Type=Person Level=Reader>

 </ACLRule>

 </PermittedEntries>

</ACLRuleSet>

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 80 of 81

5.2 Appendix B: Virtual Templates

Virtual Templates provide a quick and easy mechanism for distributing the designs of Notes databases
without the need for replicating or copying a physical template before creating new databases from the
template. Because a Virtual Template can be used from almost anywhere it is possible to have a single
point of source for a design, this ensures that new databases always use the latest available design.

5.2.1 Structure

A Virtual Template consists of a Manifest, this is an XML document that describes the complete payload
needed for a Virtual Template and a collection of DXL documents that contain the XML source for each
individual design element.

The Manifest then consists of a number of Design Sets, each Design Set defines a number of individual
Design Elements. The grouping of Design Elements into Sets allows for easy re-use of groups of Design
Elements that are needed to provide particular functionality. Each Design Element describes a Design
Item e.g. Form, view, agent and so on and provides the URL to retrieve the DXL for that design element.

The Manifest and the DXL source for each design element are published via HTTP but can be published
as files in a file system that is accessible to the RDBCreate application.

5.2.2 Manifest XML Document

The following example shows a notional XML Manifest document.

<?xml version="1.0" encoding="UTF-8"?>

<designmanifest name="Example" version="1.0">

<!--- Images -->

 <designset name="Images">

 <designelement name="hmnl-logo-transparent.gif" type="imageresource">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.imageresource.hmnl-logo-

transparentgif/$File/hmnl-logo-transparentgif.xml

 </designelement>

 <designelement name="$PlusMinus.gif" type="imageresource">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.imageresource.$PlusMinusgif/$File/$PlusMinu

sgif.xml

 </designelement>

 </designset>

<!--- Subforms -->

 <designset name="Subforms">

 <designelement name="FormHeader" type="subform" sign="1">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.subform.FormHeader/$File/FormHeader.xml

 </designelement>

 <designelement name="subAbout" type="subform" sign="1">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.subform.subAbout/$File/subAbout.xml

 </designelement>

 </designset>

<!--- Forms -->

 <designset name="Forms">

 <designelement name="QModify Transaction" type="form" sign="1">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.form.QModifyTransaction/$File/QModifyTransa

ction.xml

 </designelement>

 </designset>

<!--- Views -->

 <designset name="Views">

 <designelement name="Completed Transactions" type="view" sign="1">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.view.CompletedTransactions/$File/CompletedT

ransactions.xml

 </designelement>

 <designelement name="Delayed Transactions" type="view" sign="1">

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qmodify2.view.DelayedTransactions/$File/DelayedTrans

actions.xml

 </designelement>

DX Tools - Class Catalogue 3.14

Document: DXTOOLS-CLASS-CATALOG-3-14 Date: 10/03/2015 16:39
Version: 3.14.0
Owner: HMNL b.v. Status: Final
Subject: Class Catalogue 3.14 Page 81 of 81

 </designset>

</designmanifest>

5.2.2.1 designmanifest Node

The designmanifest is the top level node in the XML document and encloses the complete manifest
contents. The name and version attributes are arbitrary string values that are used to create a default
database title for any new database created from the manifest.

5.2.2.2 designset Node

The designmanifest node contains any number of designset nodes. A designset node is an arbitrary
collection of design elements. The name attribute is a string that is used in reporting messages by the
RDBCreate application. Although the example document shows design sets containing elements of the
same type this is not a requirement.

5.2.2.3 designelement Node

The designelement node describes a single design element that will be applied to a database. The node
contains the HTTP URL or local file name of the DXL source for the design element, the URL or filename
must be specified on a separate line of the XML document from the start or end of the node. The
following attributes are available on a designelement node.

5.2.2.3.1 name

The name attribute is mandatory and MUST specify a name or alias for the design element that can be
resolved in the database design collection.

5.2.2.3.2 type

The type attribute is mandatory and specifies the type of design element that is to be imported the type
can specify any of the following values.

"PAGE", "VIEW", "FORM", "SUBFORM", "FRAMESET", "AGENT", "IMAGERESOURCE",
"SHAREDFIELD", "SHAREDACTION", "LIBRARY", "FOLDER", "OUTLINE", "DBICON",
"SHAREDCOLUMN", "HELPABOUT", "HELPUSING".

The values are self-explanatory.

5.2.2.4 sign

The sign attribute is optional a value of “1” specifies that the design element should be signed after it is
imported.

5.2.3 Design Element DXL Sources

The design element exports are, with the exception of a DBICON export which is described later, DXL
documents as produced by one of the native Domino DXL engines.

5.2.3.1 DBICON DXL Source

The DBICON DXL source is a specially crafted DXL document that contains at the database the
application launch options that are to be used in the database (the <launchsettings> node) and an image
resource design element called “DX-Dummy-Carrier” that carries an arbitrary image (which is not used)
and an item called “IconBitmap” containing the database Icon that is to be used. The easiest way to
create one of these is either with the DCLoader application from the DX Tools suite or to download an
existing one and hand edit it to replace the launch settings and the IconBitmap item.

