
ManualManualManual

Domino eXplorer

Component Architecture 3

Author: Ian Tree

Owner: HMNL b.v.

Customer: Public

Status: Final

Date: 21/01/2015 14:30

Version: 3.14

Disposition: Open Source

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 2 of 26

Document Usage

This is an open source document you may copy and use the document or portions of the document for
any purpose.

Revision History

Date of this revision: 21/01/2015 14:30 Date of next revision None

Revision
Number

Revision
Date

Summary of Changes Changes
marked

3.12 02/02/12 Initial Base Version No

3,12.0 30/03/12 QE Version No

3.14.0 21/01/15 Updated for x64 support No

Acknowlegements

Frontpiece Design was produced by the chaoscope application.

IBM, the IBM Logo, Domino and Notes are registered trademarks of International Business Machines
Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All code and documentation presented is the property of Hadleigh Marshall (Netherlands) b.v. All
references to HMNL are references to Hadleigh Marshall (Netherlands) b.v.

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 3 of 26

Contents
1. Introduction to the DX Classes ... 4

2. Basic Run Time Initialisation ... 5

3. Multi-Threaded Service Initialisation ... 7

3.1 Initialise Pools ... 7

3.2 Start the Control Threads .. 8

3.3 Start the Worker Threads .. 10

4. Activate a Command Handler ... 11

5. Request Queue Element (RQE) Lifecycle .. 12

5.1 Posting a Request ... 12

5.1.1 The Request Owner ... 13

5.1.2 Request Priority ... 14

5.1.3 Constrained Multi Lane Scheduling ... 14

5.2 Thread Scheduling and Dispatch .. 16

5.3 Request Execution .. 17

5.4 Rejoining a Completed Request ... 17

5.4.1 Case #1: Request Found and Returned .. 17

5.4.2 Case #2: No Completed Requests are Available .. 19

5.4.3 Case #3: No More Requests Exist... 21

6. Asynchronous Logging ... 23

7. Runnable Objects ... 25

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 4 of 26

1. Introduction to the DX Classes
The Domino eXplorer (DX) was developed as a means for facilitating the rapid development of tools to be
used in projects that involve high volumes of data transformation. DX has been, and continues to be
developed for use across a wide range of Domino versions and platforms. The reference platforms are
Domino 9.0.x on Windows Server 2008 R2 (32 and 64 bit) and Red Hat Linux 6.6. DX is also used as a
research tool to investigate various aspects of Autonomic Systems, in particular Autonomic Throughput
Optimisation.

Standardised utilities have also been built around some of the functional DX classes, these are published
as “DX Tools” and can save time by providing off-the-shelf processing to be incorporated into complex
transformations that need high throughput rates.

DX consists of a set of “Kernel” classes and a collection of “Functional” classes. This document presents
the gross architecture of the DX kernel and the functional classes.

The component architecture is examined by following typical execution sequences in a representative DX
Tools application.

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 5 of 26

2. Basic Run Time Initialisation
This section looks at the start sequence in a DX application, the application in question is a multi-
threaded server add-in task.

Once started the application creates and populates an “AppRunSettings” object the class extends the
“RunSettings” class that defines the basic configuration of the application.

The application creates a “ThreadmanagerPolicy” object, this class defines the configuration of the multi-
threaded kernel.

The application creates the Run Time (“MTExecutive”) object, the basic initialisation of the Run Time is
performed in the constructor.

Application Code

AppRunSettings

RunSettings

Thread
Manager

Policy

1

2

MTExecutive

ExecEnvironment

3

4
ThreadManager

5

1

2

3

4

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 6 of 26

The constructor for the “MTExecutive” invokes the service initialisation in the ExecEnvironment base
class, the service initialisation takes care of initialising the following.

 The default elapsed timer.

 The Notes Run Time.

 Task descriptor and message queue (MQ) if the application is an add-in.

 The synchronous logging service.

The constructor then creates a “ThreadManager” singleton object and invokes the Start() function, this
transitions to the next stage in the initialisation.

5

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 7 of 26

3. Multi-Threaded Service Initialisation
This phase of the initialisation transitions the kernel and services from a single-threaded mode of
operation to a multi-threaded mode. All of these transitions are driven by the Thread Manager.

3.1 Initialise Pools

The Thread Manager allocates and initialises the Thread Pool, the Thread Pool contains a header area
that has pointers to all of the important structures needed by the kernel, including pointers to the other
allocated pools and stateful information about the kernel. The pool also contains an array of members
each one representing a thread in the DX kernel, control threads and worker threads have a member in
the Thread Pool.

Next the Thread Manager allocates and initialises the Ready Pool this pool contains Request Queue
Elements (RQEs) that contain information on every request that is ready for execution by the worker
threads.

NOTE: In the application code this pool is also referred to as the “Pending Pool”.

ThreadManager Thread
Pool

1

Ready Pool

Rejoin Pool

Log Pool

2

3

4

Db Handle
Table

5

1

2

3

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 8 of 26

The Thread Manage allocates and initialises the Rejoin Pool, this pool is used to store Request Queue
Elements (RQEs) that contain information about requests that have been executed and are waiting to
rejoin their code stream.

The Thread Manager allocates and initialises the Log Pool, this pool is used to store logging messages
that are waiting to be written to the persistent log.

The Thread Manager allocates and initialises the Database Handle Table, this table is used to store the
per thread database handles that are mapped onto a native database handle. The Notes code base only
allows a single thread to use a database handle the kernel provides an on-demand mapping capability
that will (re)open a new database handle for an individual thread and dispose of these handles when the
native handle is closed.

3.2 Start the Control Threads

4

5

ThreadManager

Log Pool
X

1

Monitor
Thread

2

Scheduler
Thread

3

Dispatcher
Thread

4

1

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 9 of 26

The Thread Manager switches the logging mode from synchronous mode to asynchronous mode. In
asynchronous mode all logging messages are written to the log pool rather than being written directly to
the persistent log.

The Thread Manager constructs a “ThreadMonitor” singleton and invokes the Start function on a new OS
thread, the Thread Manager waits until the Monitor Thread has reached the “Running” state before
proceeding. The Monitor Thread is responsible for the following functions of the multi-threaded kernel.

 Starting the worker threads.

 Asynchronous logging.

 Command handling.

 Instrumentation Package recording.

 Reviewing kernel settings.

The Thread Manager constructs a “ThreadScheduler” singleton and invokes the Start function on a new
OS thread. The Scheduler Thread is responsible for adjusting the priority of requests that are in the
“Ready Pool”.

The Thread Manager constructs a “ThreadDispatcher” singleton and invokes the Start function on a new
OS thread. The Dispatcher Thread is responsible for the following kernel functions.

 Posting requests to the Ready Pool on behalf of client threads.

 Posting requests from the Ready Pool to an available worker thread in the Thread Pool.

 Polling the Rejoin Pool for completed requests on behalf of client threads.

2

3

4

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 10 of 26

3.3 Start the Worker Threads

The monitor thread creates a unique “WorkerThread” object for each worker thread and invokes the Start
function on a new OS thread.

NOTE: Threads are identified by a positive integer, the following describes the allocation of Thread IDs.

 Thread 0 – The main application thread.

 Thread 500 – The Monitor thread.

 Thread 600 – The Scheduler thread.

 Thread 700 – The Dispatcher thread.

 Thread 1 – <max threads> - The worker threads.

ThreadManager Monitor
Thread

Worker
Threads

1

1

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 11 of 26

4. Activate a Command Handler

The application creates a new object that extends the CommandHandler class. The extension
implements any custom commands and replaces or extends the functionality of any system commands.

The application calls the AttachCommandHandler API function passing the address of the Command
Handler object.

The API sets the address of the Command Handler in the Monitor Thread.

The Monitor Thread will invoke the Command Handler at regular intervals for it to check the Message
Queue and to check for any timer driven automated commands.

Application Code

AppCommandHandler

CommandHandler

MTExecutive 2

Monitor
Thread

3
4

1

1

2

3

4

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 12 of 26

5. Request Queue Element (RQE) Lifecycle
This section examines the posting, dispatching and rejoining of a Request.

5.1 Posting a Request

The application constructs the request object that is to be executed.

Application Code

Request Object
1

X

MTExecutive
2

Thread
Pool

3

Dispatcher
Thread

Ready Pool

4

5

1

2

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 13 of 26

The application makes a call to the PostARequest API function. The call passes the following parameters.

 The address of the request object.

 The address of an object that implements the Runnable interface this object will execute the
request.

 An arbitrary (void *) address that identifies the parent of the request (see later).

 The request priority (see later).

 Flags indicating the attributes of the request.

The call will block if the “Ready Pool” is already full of requests and the PXR_WAITIF_BUSY flag was set
on the call.

The call will block again if Constrained Multi-Lane Scheduling (CMLS) is active and the requested lane is
full and the PXR_WAITIF_BUSY flag was set on the call.

The call will block again if a previous posting of a request still has the request posting semaphore still set.

The PostARequest function builds the Request Queue Element (RQE), copies it into the Thread Pool
member for the calling application thread and posts the semaphore to signal that a new RQE is available
and block any subsequent calls until the RQE is moved to the “Ready Pool”. The function then returns to
the caller.

// Request Queue Element (RQE)

typedef struct {

 volatile UINT RQEState; // State of the request

 UINT RQEAttrs; // Attributes of this RQE

 int RQEPriority; // Priority

 int RQEInspectCount; // Inspection count

 void far *pOObject; // Pointer to the Owner Object

 void far *pXObject; // Pointer to the Executable Object

 void far *pPObject; // Pointer to the Parameter Object

} RQElement;

The Dispatcher Thread periodically checks the Thread Pool Members, once it sees that a new RQE has
been posted (semaphore is set) it continues with step 5.

The Dispatcher Thread finds a free RQE slot in the “Ready Pool” and moves the posted RQE to the free
slot and clears the posting semaphore.

5.1.1 The Request Owner

Calls to the “PostARequest” and “GetRejoinRequest” functions in the run time API take a parameter of
“Request Owner” this parameter is an arbitrary address encoded as a void pointer (void *). This
parameter provides a mechanism for grouping a bunch of requests together and localising the code that
will process these grouped requests.

3

4

5

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 14 of 26

The kind of processing that the DX kernel was designed for often break down into a hierarchic pattern for
parallel execution, one request will generate a number of sub-requests and each sub-request will, in turn,
create a number of sub-sub-requests and so on. The owner mechanism can be used here to reflect the
hierarchic workload, in this case the Owner for each request is set to the address of the parent request in
the hierarchy. When polling for completed requests using the “GetRejoinRequest” the address of a parent
request is specified as the owner and the return will signal when every sub-request that belongs to that
parent has completed and therefore the parent processing can be completed.

5.1.2 Request Priority

Calls to the “PostARequest” functions in the run time accept a parameter that specifies the “Priority” of the
request. The priority is specified as an arbitrary integer value with larger numbers being a higher (more
urgent) priority. The priority is used by the kernel to determine which of the requests available in the
“Ready Pool” will be the next to be dispatched to an available thread.

As a general rule workloads that follow the hierarchic model described in the section above should post
requests at higher priorities the lower level they are in the hierarchy.

The kernel also implements an optional, request priority ageing mechanism. When ageing is in effect then
requests that reside in the “Ready Pool” have their priority increased at regular intervals. This mechanism
is intended to prevent requests becoming stale while waiting to be executed and tying up resources while
not contributing to throughput rates.

5.1.3 Constrained Multi Lane Scheduling

As pointed out in the earlier sections the kernel treats all worker threads as equals, any request can be
dispatched to any worker thread that is available to process work. When a single request is being
processed by a worker thread all processing for that request must be completed before the thread
becomes available to process other requests, including the execution and rejoin processing of any sub-
requests that are posted. There is a fundamental exposure from this model, it is possible for all threads to
fill up with “higher level” requests leaving no worker threads available to execute the lower level requests
that have been posted. In this scenario processing will simply grind to a halt with all worker threads
waiting for sub-requests to complete, which they never will, or waiting for space to become available in
the “Ready Pool” so that more sub-requests can be posted.

The kernel solves this thread exhaustion problem by providing a different scheduling mode “Constrained
Multi Lane Scheduling” (CMLS). The CMLS mode is selected by setting the TPOOL_MODE_CMLS bit in
the TPSchedMode member of the ThreadMnagerPolicy object that is used to configure the multi-
threading kernel.

When running in CMLS mode the kernel still regards all worker threads as being equal and able to
execute any request however it limits (constrains) the number of threads that can be concurrently
executing requests from different levels in the workload hierarchy. CMLS identifies four arbitrary levels of
request hierarchy. Level or Lane 0 defines service requests these requests would normally be running for
the duration of the application. Level or Lane 1 defines requests that will themselves generate any
number of what the application would recognise as unit transactions, these are referred to as feeder
transactions. Level or Lane 2 defines unit transactions and Level or Lane 3 defines sub-requests or
requests that will perform the work of a part of a transaction. The Level or Lane for an individual request
is identified to the kernel by setting the appropriate bits in the Attributes flag that is passed in the call to
“PostARequest”.

Constraints may be applied as a percentage of the threads in the thread pool that can be executing
requests from levels 0, 1 and 2. These constraints are applied by setting the appropriate members in the
ThreadManagerPolicy that used to initialise the kernel. The constraints not only apply to the worker
threads but also to the number of requests in that level that can be in the “Ready Pool” at any point in
time. The protocols for the CMLS implementation allow a worker thread or a “Ready Pool” entry to be
used from the requests level or from a resource that is available from any higher level.

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 15 of 26

 Supposing that there is an application that will execute with 10 worker threads in the thread pool and 100
entries in the “Ready Pool”, the application has configured the CMLS limits as Lane 0 is set to 0% (i.e. we
will not be executing any of these requests, Lane 1 is set to 20% and Lane 2 is also set to 20%. In this
example there could be a maximum of 20 Lane 1 requests in the ready queue at any point in time and
there could be a maximum of 2 Lane 1 requests executing concurrently. There could also be a maximum
of 40 Lane 2 requests in the “Ready Pool” at any point in time, assuming that there were no Lane 1
requests in the pool at that time and there could be a maximum of 4 Lane 2 requests executing
concurrently, also assuming that no Lane 1 requests were executing at that time. Lane 3 requests are
always unconstrained and can occupy all of the available slots in the “Ready Pool” and can be
concurrently executing requests in every thread in the thread pool.

It should be noted that the priority mechanisms described in the previous section remain in effect when
the CMLS scheduling mode is engaged.

The original analogy used in the design of the CMLS facility was to view the worker threads as separate
lanes on a motorway and to view the different Levels as vehicle types with 0 being large articulated
lorries, 1 being lorries, 2 being vans and 3 being cars and motorbikes. Signals above the motorway
restrict vehicle types to only using assigned lanes. When entering the motorway, if the assigned lanes for
your vehicle type are full then you have to wait. The analogy can still be useful but does introduce some
false assumptions about how CMLS works. The main failing is that threads are not assigned to handle
particular CMLS levels, individual threads can be used for any request but CMLS will prevent the total
current work profile from exceeding any of the prescribed constraints.

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 16 of 26

5.2 Thread Scheduling and Dispatch

The Scheduler Thread periodically inspects every RQE in the Ready Pool and adjusts the priority of the
request as appropriate. If the Thread Manager Policy has the Request Aging policy set
(PRIO_POLICY_AGERQS) then the priority is increment (+1) on each scheduler interval, if additionally
the Preferential Request Boosting policy is in effect and the particular request is marked for boosting then
an additional increment of the priority is made by a value specified in the Thread Manage Policy.

The dispatcher thread monitors all of the Thread Pool Members locating worker threads that are now free
to execute work. When the thread has one or more worker threads that can execute new requests and
there are requests waiting to be executed in the Ready Pool then work is dispatched.

The dispatcher thread copies the RQE from the ready pool and marks the slot in the pool as free.

The Dispatcher Thread posts the RQE into the available Thread Pool Member and marks the member to
show that there is work waiting to be executed.

Scheduler
Thread

Ready Pool

1

Dispatcher
Thread

Thread
Pool

2

3

4

1

2

3

4

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 17 of 26

5.3 Request Execution

Each Worker Thread monitors its own Thread Pool Member and on detecting that the Dispatcher has
posted work for it to do it marks the thread state as Busy.

The Worker Thread then invokes the Runnable interface on the executor object via the ExecuteThis
Request call, passing the Request object. The request is then executed.

Once the request has finished executing it returns from the ExecuteThisRequest call then if the request
was marked as rejoinable the RQE is written to a free slot in the Rejoin Pool. The Worker Thread will
release any thread local database handles that are no longer valid or needed.

 The Worker Thread then updates its state to show that it is again available for work.

5.4 Rejoining a Completed Request

5.4.1 Case #1: Request Found and Returned

Thread
Pool

Worker
Thread

1

Request
Object

Runnable
Object

2

2

Rejoin Pool 3

4

1

2

3

4

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 18 of 26

The application calls the GetRejoinRequest API function, passing the arbitrary address of the “Owner”.

The function scans the Rejoin Pool for a completed request for the specified “Owner”.

The function posts the Rejoin Poll Semaphore in its own Thread Pool Member.

The Dispatcher Thread scans each Thread Pool Member and is triggered by the Rejoin Poll Semaphore
being set in one of the members.

Application Code MTExecutive
1

Rejoin Pool

2

Thread
Pool

Dispatcher
Thread

3

4

5

6

7

1

2

3

4

5

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 19 of 26

The Dispatcher Thread locates a completed Request in the Rejoin Pool, copies the RQE and frees the
slot in the pool.

The Dispatcher Thread stores the completed RQE in the Thread Pool Member and clears the Rejoin Poll
Semaphore.

The API function has been waiting for the Rejoin Poll Semaphore to become free again and now retirns
the address of the completed Request Object to the application code with a return code indicating that a
valid object has been returned (RJR_RETURNED).

5.4.2 Case #2: No Completed Requests are Available

The application calls the GetRejoinRequest API function, passing the arbitrary address of the “Owner”.

The function scans the Rejoin Pool for a completed request for the specified “Owner” and finds none.

6

7

Application Code MTExecutive
1

Rejoin Pool

2

Thread
Pool

3

Ready Pool
4

5

1

2

3

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 20 of 26

The function will then scan the Thread Pool Members checking if any thread is currently executing a
request for the specified “Owner” if one is found then the function will return the RJR_NONE_READY
indication. In this case we assume that none were found.

The function scans the Ready Pool for a request for the specified “Owner”.

When a request is located that matches the specified “Owner” the function returns the
RJR_NONE_READY indication to the caller.

4

5

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 21 of 26

5.4.3 Case #3: No More Requests Exist

The application calls the GetRejoinRequest API function, passing the arbitrary address of the “Owner”.

The function scans the Rejoin Pool for a completed request for the specified “Owner” and finds none.

As in Case #2 the function also checks the Thread Pool Members and the Ready Pool and again finds no
entries for the specified “Owner”. The result is however regarded as non-authoratative as requests could
have been between states during the tests.

The function posts the Rejoin Poll Semaphore in its own Thread Pool Member, then waits until the
semaphore is cleared again.

1

2

3

4

Application Code MTExecutive
1

Rejoin Pool

2

Dispatcher
Thread

3

4

5

6

Rejoin Pool

Thread Pool

Ready Pool

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 22 of 26

The Dispatcher Thread then performs checks of the Rejoin Pool, Thread Pool and Ready Pool to find any
request for the specified “Owner”, in this case none is found. As these checks are performed by the
Dispatcher Thread no state transitions of requests can happen during the search, the answer is therefore
authoritative.

The Dispatcher Thread posts the return notification indicating that no more requests exist
RJR_NONE_EXIST and clears the Rejoin Poll Semaphore.

The API function returns the RJR_NONE_EXIST notification to the caller.

5

5

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 23 of 26

6. Asynchronous Logging

The application code calls one of the logging API functions, passing the message to be logged.

The API function will block if the Log Semaphore is still asserted from a previous call on the same thread.
When the semaphore is free the function stores the log message in the Thread Pool Member for the
current thread and assets the Log Semaphore.

Application
Code

X

MTExecutive
1

Thread
Pool

2

Monitor
Thread

Log Pool

3

4 5

Repository

6

1

2

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 24 of 26

The Monitor Thread periodically checks the Thread Pool Members and is triggered on detecting the Log
Semaphore being posted.

The Monitor Thread then moves the log message to the Log Pool and clears the Log Semaphore.

The Log Pool is configured as a clock buffer, this is a circular buffer with a head and tail pointer, entries
are added to the tail and removed from the head.

The Monitor Thread periodically inspects the Log Pool, it is triggered by the presence of log messages in
the pool.

A number of messages are then written to the persistent log (usually the repository). Messages are
written from the head pointer and the entry is freed by moving the head pointer towards the tail.

3

4

5

6

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 25 of 26

7. Runnable Objects
Runnable objects implement the Runnable interface that allows them to perform processing on multiple
worker threads.

Runnable objects are the workhorse engines in a DX application, they execute the core functions of the
applications on multiple threads in parallel. The sequence below shows the typical execution model of a
Runnable object.

The mainline application code constructs a singleton instance of the Runnable object.

The application code creates a top level request object and posts it for execution by the Runnable object.

The multi-threading kernel dispatches the top level request object to a worker thread for execution by the
Runnable object.

The Runnable object starts executing the top level request.

Application
Code 1

MTExecutive Worker
Thread

Runnable
Object

2 3

Worker
Thread Worker

Thread

4

5

6

1

2

3

4

Domino eXplorer - Component Architecture 3

Document: DX-COMPONENT-ARCHITECTURE Date: 10/03/2015 15:44
Version: 3.12.0
Owner: HMNL b.v. Status: Final
Subject: Component Architecture 3 Page 26 of 26

The Runnable object creates multiple sub-requests and posts them for execution by the Runnable object.

The requests are then dispatched to available worker threads for execution.

The Runnable object is now executing the top level request and multiple sub-requests in parallel.

5

6

