
Manual

DX Tools

Using QACLMorph 1.0

Author: Ian Tree

Owner: HMNL b.v.

Customer: Public

Status: Final

Date: 24/01/2012 14:09

Version: 1.0

Disposition: Open Source

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 2 of 33

Document History

Document Usage

This is an open source document you may copy and use the document or portions of the document for
any purpose.

Revision History

Date of this revision: 23/03/2012 08:21 Date of next revision None

Revision
Number

Revision
Date

Summary of Changes Changes
marked

0.1 13/11/11 Initial Base Version No

1.0 23/03/12 QE Version No

Acknowlegements

Frontpiece Design was produced by the chaoscope application.

IBM, the IBM Logo, Domino and Notes are registered trademarks of International Business Machines
Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All code and documentation presented is the property of Hadleigh Marshall (Netherlands) b.v. All
references to HMNL are references to Hadleigh Marshall (Netherlands) b.v.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 3 of 33

Contents
1. Introduction to QACLMorph .. 6

2. QACLMorph Transactions .. 7

2.1 Source Specification ... 7

2.1.1 Source Server .. 7

2.1.2 Source Database ... 7

2.1.3 ACL Specification .. 7

2.1.4 Allow Recursion ... 7

2.2 Generic Transaction Options .. 7

2.2.1 Status ... 7

2.2.2 Transaction Request ID ... 7

2.2.3 Approval Status.. 8

2.2.4 Urgent Flag .. 8

2.3 Scheduling Options ... 8

2.3.1 First Run Time ... 8

2.3.2 Repeat ... 8

3. XML Document ... 9

3.1 Sections .. 9

3.2 Entries ... 9

3.2.1 ACLRule Node ... 9

3.2.2 Option Node ... 10

3.2.3 Role Node .. 11

3.3 Example Rule Sets.. 11

3.3.1 Enforcing A Server Entry ... 11

3.3.2 Removing Administrators from the ACL .. 12

3.3.3 Preparing Databases for Archiving .. 12

4. Feeder Transactions ... 14

4.1 General ... 14

4.1.1 Source Selection .. 14

4.1.2 Action and Error Processing Options .. 14

4.1.3 Method of Operation .. 14

5. Transaction Workflow ... 15

5.1 New Transaction ... 15

5.2 Approved Transaction ... 15

5.3 In Progress Transaction .. 15

5.4 Completed Transaction ... 15

5.5 Error Transaction .. 15

5.6 Retried Transaction ... 15

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 4 of 33

5.7 Delayed Transaction ... 16

6. Programmatic Interface .. 17

6.1 Creating New Transactions ... 17

6.2 Monitoring Transaction Progress .. 17

7. Installing QACLMorph ... 18

7.1 Building the QACLMOrph Server Add-In Task ... 18

7.1.1 Reference Environments ... 18

7.1.2 Notes API Installation .. 18

7.1.3 Directory Structure ... 18

7.1.4 Installing the DXCommon Kernel Sources .. 19

7.1.5 Installing the QACLMorph Sources ... 20

7.1.6 Build Settings ... 20

7.1.7 Building and Deploying the Application ... 27

7.2 Installing the QACLMorph Control Database .. 27

7.2.1 Install the Database ... 27

8. Starting QACLMorph on the Server .. 29

8.1.1 Command Line Options ... 29

9. QACLMorph Tell Commands .. 30

9.1 QACLMorph Message Queues ... 30

9.2 Commands .. 30

9.2.1 Quit .. 30

9.2.2 Stop [now] .. 30

9.2.3 Abort .. 30

9.2.4 Suspend ... 30

9.2.5 Resume .. 30

9.2.6 Verbose .. 30

9.2.7 Loud ... 31

9.2.8 Terse .. 31

9.2.9 Quiet .. 31

9.2.10 Echo [on|off] ... 31

9.2.11 Noecho ... 31

9.2.12 Trace [nnn] ... 31

9.2.13 Debug [nnn] ... 31

9.2.14 Refresh .. 31

9.2.15 Status ... 31

9.2.16 Stats [thread|debug]... 32

9.2.17 Panic [message] .. 32

9.2.18 Maxtrans nn ... 32

9.3 Debugging Commands ... 32

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 5 of 33

9.3.1 Memory .. 32

9.3.2 Dump ... 32

10. Common Usage Scenarios ... 33

10.1 De-Merger ... 33

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 6 of 33

1. Introduction to QACLMorph
QACLMorph is a tool for managing database ACLs in large volumes. The process is driven by an XML
document that defines what a conformant ACL looks like for a set of databases it will then process each
database to enforce conformance of the ACL. The utility was designed to operate against an XML
document as these documents can be generated “on the fly”. The XML document defines a mixture of
ACL patterns and entries that are

 Compulsory – must appear in the conforming ACL

 Forbidden – must NOT appear in the conforming ACL

 Permitted – if present in the ACL then they are conforming

QACLMorph is fast and resilient. Multiple databases can be processed in parallel allowing sustained high
rates of ACL processing.

The QACLMorph application is constructed as a Domino Server Add-In task, as such it is perfectly suited
to unattended operations.

QACLMorph is a C++ application constructed on the DXCommon application kernel supporting Domino
version from 6.0 through 8.5 on both Widows & Linux server platforms.

The ACL management engine at the heart of the QACLMorph application is mature and well tested
component having been used in production environments for many years. It has been used in different
configurations to manage the ACLs of over 100,000 databases.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 7 of 33

2. QACLMorph Transactions
This section of the document identifies the different options that can be used on a QACLMorph
transaction and how these options should be used.

2.1 Source Specification

These options are used to specify the database(s) that will be processed by the current transactions and
the source of the ACL rules that will be applied to them.

Note: The specifications for the selection and processing of collections of databases (“Feeder
Transactions”) are dealt with in a later section of this document.

2.1.1 Source Server

Supply the abbreviated name of the server from which you want to process the database. A value of
“Local” can be used to indicate the Local server i.e. the server on which the QACLMorph Add-In task is
running. This parameter is mandatory.

2.1.2 Source Database

Supply the name of the source database that is to be processed, the name should be supplied with the
path relative to the Notes Data Directory on the source server. This parameter is mandatory.

2.1.3 ACL Specification

A URL that identifies the XML document that contains the conforming ACL specification for the selected
database(s). The specification can be a file name of a file on the local (where QACLMorph is running) or
a HTTP URL.

2.1.4 Allow Recursion

If the source database specification contains a directory then this setting determines if (Yes) the
transaction will recurse into sub-directories or (No) not. Refer to the section on “Feeder Transactions” for
more details.

2.2 Generic Transaction Options

The following settings do not affect the requested operation itself but are related to the logistics of
executing the transaction itself.

2.2.1 Status

This parameter determines the current state of the transaction in the processing cycle. Refer to the
section “Transaction Workflow” for more details.

2.2.2 Transaction Request ID

This parameter assigns a unique transaction identifier to each transaction that passes through the
processing cycle. For manually created transactions this is set to a value computed by the @Unique
formula language function. Refer to the section on “Programmatic Interfaces” for more details on how this
item is used. Refer to the section on “Feeder Transactions” for more details on automatically generated
transaction request IDs.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 8 of 33

2.2.3 Approval Status

Transactions that are in the “NEW” transaction state are not available for processing until the approval
status is set to “Approved”. This provides a simple workflow which can be useful when dealing with
source and target servers that exist in different administrative or organisational domains.

Transactions that require approval are held in a separate queue and can be selected and approved “in
bulk”.

2.2.4 Urgent Flag

Transactions can be selected and marked as being urgent, this moves the transactions to the head of the
queue of transactions that are ready for execution.

2.3 Scheduling Options

Transactions may be scheduled for repeated or one-off execution. The following parameters are used to
control individual transaction scheduling.

2.3.1 First Run Time

Supply the date and time when the transaction should be run for the first or only time.

2.3.2 Repeat

Specify when the transaction should be repeated. A value of “Never” causes the transaction to be run
only a single time. “Daily”, “Weekly” or “Monthly” indicate that after the intial run the transaction will be run
again at the indicated interval. The time supplied in the “First Run Time” setting will be the target time of
day when the transaction will run again.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 9 of 33

3. XML Document
The XML document supplied is a well-formed XML document that specifies, in a declarative style, what
rules the final ACL configuration must conform to.

There are four primary nodes in the XML document, note that all four are optional.

3.1 Sections

<AdminServer>

This node of the XML document will defines a single ACLRule that will be applied as the Admin Server in
the database ACL.

<CompulsoryEntries>

This node of the XML document will define entries that must appear in the final ACL (and what settings
they must have). ACL entries specified in this section will be added if they are missing or updated if they
are present so that their settings match those in the document.

<ForbiddenEntries>

This node of the XML document will define entries that must not appear in the final ACL. If present then
these entries will be removed. If an entry in this section conflicts with an entry in the compulsory or
permitted entries then this section takes precedence and the entry will be removed.

<PermittedEntries>

This node, if present, will specify entries (or more usually patterns of entries) that are allowed to be
present in the final ACL configuration. All entries in the ACL will be removed except entries that match
entries in this node or any entries in the <CompulsoryEntries> node. Entries that do match entries in
this node may have their settings adjusted to conform to the entries or patterns specified here.

3.2 Entries

Individual ACL entries or groups of ACL entries matching a specified pattern are identified with an
<ACLRule> node. An ACLRule node can optionally contains a number of <Option> nodes and/or a
number of <Role> nodes. An Option node represents the setting on or off of a single ACL flag. A Role
node associates the entry with membership or not of a specified ACL role.

3.2.1 ACLRule Node

The following attributes apply to an ACLRule Node.

3.2.1.1 Name Attribute

Either a Name attribute or a Pattern Attribute must be supplied on an ACLRule node. The name attribute
specifies a string containing an abbreviated name that will be matched to an entry in the ACL list. If the
name contains any “*” wildcards then these will be matched literally to the ACL entries, if you wish to do
wildcard matching then specify a pattern attribute in place of the name attribute. If the name matches an
entry in the ACL then the rest of the specification in the ACLRule will be applied to that entry. If the
ACLRule entry is in the AdminServer section of the ACL Rule Set then the name can specify a symbolic

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 10 of 33

value of “none”, if this is specified then any entry in the ACL that is specified as the Admin Server will be
changed to a regular entry.

3.2.1.2 Pattern Attribute

Either a Name attribute or a Pattern Attribute must be supplied on an ACLRule node. The pattern attribute
specifies a string containing an abbreviated name with wildcards that will be matched to multiple entries in
the ACL list. If the pattern matches any entries in the ACL then the rest of the specification in the
ACLRule will be applied to those entries. ACLRule entries in the compulsory entries section of a rule set
CANNOT specify patterns.

3.2.1.3 Type Attribute

The type attribute specifies the type that should be set in any matching ACL entries. The type should
specify one of the following symbolic values.

 Person – A Person ACL entry.

 Server - A Server ACL entry.

 PersonGroup – A Person Group ACL entry.

 ServerGroup – A Server Group ACL entry.

 MixedGroup – A Mixed Group ACL entry.

 Unspecified – An Unspecified ACL entry.

3.2.1.4 Level Attribute

The level attribute specifies the access level that should be applied to any matching ACL entries. The
level should specify one of the following symbolic values.

 Manager – Specified Manager access level.

 Designer – Specifies Designer access level.

 Editor – Specifies Editor access level.

 Author – Specifies Author access level.

 Reader – Specifies Reader access level.

 Depositor – Specifies Depositor access level.

 NoAccess – Specifies No Access .

3.2.2 Option Node

An Option node represents a single ACL flag and determines if the flag should be set on or off on any
matching entries. The Option node has the following attributes.

3.2.2.1 Type Attribute

The type attribute identifies the specific ACL flag that should be set on or off. The type should specify one
of the following symbolic values.

 NoCreateDocs – If set on the user cannot create documents in the database.

 NoDeleteDocs – If set on the user cannot delete documents in the database.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 11 of 33

 CreatePrivateAgents – If set on then the user is permitted to create private agents in the

database.

 CreatePrivateFolders – If set on then the user is permitted to create private views or

folders in the database.

 CreateFolders – If set on then the user is permitted to create public folders in the database.

 CreateLotusScript – If set on then the user is permitted to create LotusScript agents in the

database.

 PublicReader – If set on then the user has read access to pulic documents in the database.

 PublicWriter – If set on then the user has write access to pulic documents in the database.

 NoMonitors – If set on then the user cannot set monitors on the database.

 NoReplicate – If set on then the user cannot replicate or copy documents from the database.

3.2.2.2 Set Attribute

The set attribute specifies if the designated ACL flag should be set on or off. Specify one of the symbolic
values of on or off for this attribute.

3.2.3 Role Node

The Role node is used to assign or un-assign a particular ACL role to any matching ACL entries. The
Role node has the following attributes.

3.2.3.1 Name Attribute

The name attribute is used to identify the specific ACL Role that is to be assigned or un-assigned to the
ACL entries. The value may be specified as * to assign or un-assign all of the ACL Roles defined in the
database ACL.

3.2.3.2 Assign Attribute

The assign attribute determines if the specified role(s) should be assigned or un-assigned to any
matching ACL entries. Specify one of the symbolic values yes or no.

3.3 Example Rule Sets

This section presents a number of example ACL rules XML documents that would be used to accomplish
specific tasks in manipulating the ACL of databases.

3.3.1 Enforcing A Server Entry

The following XML document will make sure that there is a wildcard ACL entry for all servers in the
infrastructure and that particular settings apply to the entry if it already exists.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 12 of 33

<?xml version='1.0' encoding='utf-8'?>

<-- Add a generic server entry -->

<ACLRuleSet>

 <CompulsoryEntries>

 <ACLRule Name="*/SERVER/ACME” Type=ServerGroup Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes/>

 </ACLRule>

 </CompulsoryEntries>

</ACLRuleSet>

3.3.2 Removing Administrators from the ACL

The following XML document will remove any administrators that are listed explicitly in the ACL of any of
the databases being processed.

<?xml version='1.0' encoding='utf-8'?>

<-- Remove administrators from the ACL -->

<ACLRuleSet>

 <ForbiddenEntries>

 <ACLRule Pattern="*/ADMIN/ACME>

 </ACLRule>

 </ForbiddenEntries>

</ACLRuleSet>

3.3.3 Preparing Databases for Archiving

This is a more complex example that achieves a number of adjustments to the ACLs of databases in
preparation for archiving. Any Admin Server is removed. Archive administrative groups are added,
general entries are corrected or added as necessary. Normal administrators are removed. Personal
entries in the ACL are dropped to reader level access.

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE DXACL SYSTEM 'xmlschemas/domino_7_0.dtd'>

<ACLRuleSet>

 <AdminServer>

 <ACLRule Name=none Type=Server>

 </ACLRule>

 </AdminServer>

 <CompulsoryEntries>

 <ACLRule Name="*/SERVER/ACME" Type=ServerGroup Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes>

 </ACLRule>

 <ACLRule Name="LocalDomainServers" Type=ServerGroup

Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes>

 </ACLRule>

 <ACLRule Name="OtherDomainServers" Type=ServerGroup

Level=NoAccess>

 </ACLRule>

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 13 of 33

 <ACLRule Name="_4ArchiveAdministrators_Manager" Type=PersonGroup

Level=Manager>

 <Option Type=NoDeleteDocs Set=Off/>

 <Role Name=* Assign=Yes>

 </ACLRule>

 <ACLRule Name="-Default-" Type=Unspecified Level=NoAccess>

 <Option Type=PublicReader Set=Off>

 <Option Type=PublicWriter Set=Off>

 </ACLRule>

 <ACLRule Name="Anonymous" Type=Unspecified Level=NoAccess>

 </ACLRule>

 <ACLRule Name="_4ArchiveAccess_Users" Type=PersonGroup

Level=Reader>

 </ACLRule>

 </CompulsoryEntries>

 <ForbiddenEntries>

 <ACLRule Name="_4Operationsl_Admins"/>

 </ForbiddenEntries>

 <PermittedEntries>

 <ACLRule Pattern="*/*/ACME" Type=Person Level=Reader>

 </ACLRule>

 </PermittedEntries>

</ACLRuleSet>

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 14 of 33

4. Feeder Transactions

4.1 General

“Feeder” transactions are single transactions that can be submitted to QACLMorph for processing that
apply to a collection of databases rather than a single database. The simplest example of a collection of
databases is a directory. Rather than having to supply an individual transaction for each database in a
directory you can instead supply just the directory name. QACLMorph will recognise such a transaction
and process each database in the directory as if a single database had been specified in the transaction.

4.1.1 Source Selection

The largest practical unit of source selection that you can apply is a Server. Specify an asterisk (*) in the
source database field on a transaction to select every database on the source server for processing.

The next unit of source selection that can be applied is multiple directories that match a pattern. Specify a
directory name containing wildcard characters in the source database field on a transaction to select
every directory within the Notes Data Directory that matches the pattern and every database within those
directories that are selected. For example supplying a value of “mail?” for the source database would
process all databases in the “mail1”, “mail2”, “mail3” etc. directories. The selection of source databases
will recurse into the sub-directories of the selected directories.

Specifying a directory name without any wildcards would result in all of the databases within the directory
and any sub-directories and their databases to be selected for processing. Recursion into any sub-
directories that are found within the specified scope can be prevented by setting the “Allow Recursion”
option to “No”.

Further refinement can be made to selection, for instance, specifying “mail1\a*.nsf” would select all of the
databases that start with the letter “a” from the “mail1” directory.

4.1.2 Action and Error Processing Options

All options specified on the Feeder transaction will be used for each of the individual database processing
operations.

4.1.3 Method of Operation

When a Feeder transaction is executed then each database that matches the source selection is located
and a new QACLMorph transaction is built, copying all of the options from the Feeder transaction. The
XML document is only parsed once and a copy of the ACLRuleSet object is placed in each of the
individual transactions. The new transactions are then posted for immediate processing.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 15 of 33

5. Transaction Workflow
This section describes the different states that a transaction moves through during normal operation and
fault handling.

5.1 New Transaction

When a transaction is created it is assigned a status of “NEW”, assuming that the approval flag has taken
the default setting of “Not Approved” then the transition will sit in the “To Be Approved” queue. The
transaction will remain in this queue indefinitely until it is approved. Multiple transactions can be selected
in the “To Be Approved” queue and approved using the action at the top of the view.

5.2 Approved Transaction

When a NEW transaction is approved it is moved to the “Ready” queue. This queue is maintained in the
order that transactions are created, however the Urgent Flag can be used to move individual transactions
to the head of the queue.

The “Ready” queue is continuously monitored by the QACLMorph server add-in task, as soon as the add-
in is in a state where it can run another transaction it will select the transaction at the head of the queue
and start to execute it.

5.3 In Progress Transaction

As soon as the QACLMorph server add-in task starts to execute a transaction then it is marked “IN
PROGRESS”.

Should the server add-in task or indeed the server fail catastrophically then any transactions that were
executing at the time of the failure (i.e. marked “IN PROGRESS”) will be automatically restarted.

The transaction will remain in the “IN PROGRESS” state until it completes or fails.

5.4 Completed Transaction

When a transaction completes all process steps without any faults being detected it is changed to the
“COMPLETED” state. This is a terminal state the transaction makes no further transitions.

5.5 Error Transaction

If the transaction experienced some kind of fault during execution and the “Allow Retries” option is not set
to “Yes” on the transaction then the transaction is marked as an “ERROR” and moved to the errors
queue. This is a terminal state the transaction makes no further transitions.

5.6 Retried Transaction

If the transaction experienced some kind of fault during execution and the “Allow Retries” option is set
and the retry count for the transaction has not exceeded the Maximum Number of Retries then the
transaction will be retried. One copy of the failed transaction has its state set to “RETRIED” and moved to
the retried queue, this copy of the transaction holds the log and processing information from the failed
execution attempt. A second fresh copy is put on the delayed queue.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 16 of 33

5.7 Delayed Transaction

If a transaction experienced a fault but was eligible to be retried then it is marked as “DELAYED” and
moved to the delayed transaction queue. The QACLMorph server add-in tasks monitors the delayed
transaction queue any time that it has no work available on the transaction ready queue and will execute
transactions from that queue providing that they have been on the queue for a minimum of 15 minutes.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 17 of 33

6. Programmatic Interface
It is a relatively trivial task to interface the QACLMorph control databases to other applications. There are
minimal requirements for creating a new transaction and a view is provided for monitoring the progress of
individual transactions.

6.1 Creating New Transactions

The following fields should be set as indicated as a minimum to form a valid QCopy transaction.

 Form – “QATX”.

 Status – “NEW”.

 Approved – “Yes” unless you require the transaction to be manually approved in the control
database before it is executed in which case set it to “No”.

 TransReqID – This is the transaction ID and should be set to a unique value on each transaction.
Hint, you can set this to the UNID (@DocumentUniquID) of the source transaction to provide an
easy reference between the application and the control database.

 SourceServer – Set this field to the abbreviated name of the server hosting the databases that
are to be processed, set the field to “Local” to process databases on the current server.

 SourceDatabase – The name of the database to be processed.

 ACLPattern – Set this field to a file name or a HTTP URL specifying where the ACL rules XML
document can be loaded from.

The following fields can optionally be set to change the processing options of the transaction.

 Urgent – set the value to “Yes” or “No” to affect the urgency of the transactions.

 AllowRetry – set the value to “1” to permit the transaction to be retried if it fails.

 RetryLimit – set this value to a string containing the number of times that the transactions can be
retried.

 AllowRecursion – set this value to “Yes” to allow recursion into sub-directories found within scope
or “No” to prevent this.

6.2 Monitoring Transaction Progress

Use the “LookupByTransactionID” view in the database to track the progress of individual transactions.
The view is keyed on the Transaction ID. Applications should normally check the “Status” field on an
individual transaction to determine the current state. The following states are regarded as being terminal
and should be acted on by the application.

 “COMPLETED” – the transaction has been executed and has completed processing without any
errors.

 “ERROR” – the transaction has failed, it may have been retried a number of times before
reaching this state.

All other values of the transaction status field should be considered as transient and should not be acted
on by the application.

If permitted and a transaction fails and is retried then there will be more than one transaction document in
the control database with the same transaction ID. Refer to the “Transaction Workflow” section of this
document for details.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 18 of 33

7. Installing QACLMorph

7.1 Building the QACLMOrph Server Add-In Task

The QACLMorph server add-in task is built on the Domino eXplorer Tools DXCommon kernel and the
Notes C API, you need to download and install these before you can build the QACLMorph application.

7.1.1 Reference Environments

DXTools and the DXCommon kernel are portable across multiple platforms that support the Notes API.
However there are a limited set of reference environments on which they are regularly built and
regression tested.

Windows:

Build Environment:

Microsoft Visual Studio 2005

Version 8.0.50727.867 (vsvista.050727-8600)

Running on any supported windows workstation.

Note: Backward compatibility tests are done with Visual Studio 2003 as that is the officially supported
development platform for the Notes API.

Notes API Version 8.5.

Execution Environment:

Windows Standard Server 2008 R2 (32 bit).

Domino Server 8.5.1 FP3.

Note: Execution environments from Domino 6.5.x through 8.5.x are regularly used.

Linux:

Build Environment:

Gcc Version: 4.1.2 for i386-redhat-linux.

Running on Redhat Linux 2.6.18-238.12.1.el5PAE #1 SMP Sat May 7 20:37:06 EDT 2011 i686 i686 i386
GNU/Linux

Notes API Version 8.5

Execution Environment:

Redhat Linux 2.6.18-238.12.1.el5PAE #1 SMP Sat May 7 20:37:06 EDT 2011 i686 i686 i386 GNU/Linux

Domino Server 8.5.1 FP3.

Note: Execution environments from Domino 7.0.x through 8.5.x are regularly used.

7.1.2 Notes API Installation

For both Windows and Linux DXTools assumes that the Notes API is installed in the default configuration
specified in the API documentation.

7.1.3 Directory Structure

For both Windows and Linux DXTools uses a reference development directory structure based on the
Visual Studio structure.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 19 of 33

In Visual Studio the DXCommon project directory should have the “Do Not Build” property set.

In both the Windows and Linux environments it is possible to use a symbolic link for the ”DXCommon”
directory. This is a common deployment pattern for development environments where different versions
of an API might need to be supported.

7.1.4 Installing the DXCommon Kernel Sources

Windows:

The DXCommon kernel is supplied as a zipped archive (.zip). The contents of the archive should be
unpacked to either the <solution directory>\DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>\DXCommon directory.

As an example.

Unpack the DXCommon kernel into a directory “c:\usr\include\DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

mklink /D DXCommon “c:\usr\include\DXcommon-3.12.0”

Linux:

The DXCommon kernel is supplied as a gzipped archive (.tar.gz). The contents of the archive should be
unpacked to either the <solution directory>/DXCommon directory or unpacked to a directory that will then
be used as the base for a symbolic link from the <solution directory>/DXCommon directory.

File ownership and access settings should be adjusted according to your local policies.

As an example.

Unpack the DXCommon kernel into a directory “/usr/include/DXCommon-3.12.0” and then create the
symbolic link from within the solution directory using the following command.

ln -s /usr/include/DXCommon-3.12.0 DXCommon

Solution Directory <any name>

Project Directory “DXCommon”

Project Directory “QACLMorph”

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 20 of 33

7.1.5 Installing the QACLMorph Sources

Windows:

The QACLMorph sources are supplied as a zipped archive (.zip). Create an empty project called
“QACLMorph” in the <solution directory>. Then unpack the contents of archive into the project directory
and add each of the source and header files to the project.

Header Files

ACLMorphRequest.h

AppCommandHandler.h

AppRunSettings.h

AppTransactionHandler.h

DbACLMorpher.h

QACLMorph.h

Source Files

ACLMorphRequest.cpp

AppCommandHandler.cpp

AppRunSettings.cpp

AppTransactionHandler.cpp

AbACLMorpher.cpp

QACLMorph.cpp

Linux:

The QACLMorph sources are supplied as a gzipped archive (.tar.gz). Create the “QACLMorph” project
directory within the <solution directory> unpack the contents of the archive into that directory.

File ownership and access settings should be adjusted according to your local policies.

7.1.6 Build Settings

Windows:

Add each source and header file that is used from the DXCommon kernel to the QACLMorph project. It is
convenient to add these source and header files into subsets that can then be copied into other projects,
in Visual Studio 2005 these collections are referred to as “filters”. To create a filter right-click on either the
“Header Files” folder or the “Source Files” folder and select “Add” then “New Filter”. The following filters
are convenient to use in the QACLMorph project “ACL”, “Explorer” and “Runtime” these filters should be
created in both the “Source Files” and “Header Files” folders. To populate the individual filter right-click on
the filter then select “Add” then “Existing Item” navigate to the required source or header file(s), select the
file(s) and click the “Add” button. The contents of each filter are listed below.

Header Files\ACL

DXCommon\ACL\DXACLRule.h

DXCommon\ACL\DXACLRuleSet.h

DXCommon\ACL\DXACLRuleSetParser.h

Header Files\Explorer

DXCommon\MTDX\DominoExplorer.h

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 21 of 33

DXCommon\MTDX\DXDbScanner.h

DXCommon\MTDX\DXDirScanner.h

DXCommon\MTDX\DXFilter.h

DXCOmmon\MTDX\DXDXReporter.h

DXCommon\MTDX\DXRequest.h

DXCommon\MTDX\DXServerScanner.h

DXCommon\MTDX\DXSpider.h

DXCommon\MTDX\DXSStash.h

Header Files\Runtime

DXCommon\APIPackages.h

DXCommon\MTX\CommandHandler.h

DXCommon\DXException.h

DXCommon\DXGlobals.h

DXCommon\ElapsedTimer.h

DXCommon\Debug\Helper.h

DXCommon\MTX\MTExecutive.h

DXCommon\Platform\NotesBase.h

DXCommon\Platform\PlatBase.h

DXCommon\Threads\Runnable.h

DXCommon\RunSettings.h

DXCommon\Threads\ThreadDispatcher.h

DXCommon\Threads\ThreadManager.h

DXCommon\Threads\ThreadManagerPolicy.h

DXCommon\Threads\ThreadMonitor.h

DXCommon\Threads\ThreadScheduler.h

DXCommon\Threads\ThreadStructs.h

DXCommon\MTX\TransactionHandler.h

DXCommon\MTX\TransactionQueue.h

DXCommon\Threads\WorkerThread.h

Source Files\ACL

DXCommon\ACL\DXACLRule.cpp

DXCommon\ACL\DXACLRuleSet.cpp

DXCommon\ACL\DXACLRuleSetParser.cpp

Source Files\Explorer

DXCommon\MTDX\DominoExplorer.cpp

DXCommon\MTDX\DXDbScanner.cpp

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 22 of 33

DXCommon\MTDX\DXDirScanner.cpp

DXCommon\MTDX\DXFilter.cpp

DXCOmmon\MTDX\DXDXReporter.cpp

DXCommon\MTDX\DXRequest.cpp

DXCommon\MTDX\DXServerScanner.cpp

DXCommon\MTDX\DXSpider.cpp

DXCommon\MTDX\DXSStash.cpp

Source Files\Runtime

DXCommon\APIPackages.cpp

DXCommon\MTX\CommandHandler.cpp

DXCommon\DXException.cpp

DXCommon\ElapsedTimer.cpp

DXCommon\Debug\Helper.cpp

DXCommon\MTX\MTExecutive.cpp

DXCommon\Threads\Runnable.cpp

DXCommon\RunSettings.cpp

DXCommon\Threads\ThreadDispatcher.cpp

DXCommon\Threads\ThreadManager.cpp

DXCommon\Threads\ThreadManagerPolicy.cpp

DXCommon\Threads\ThreadMonitor.cpp

DXCommon\Threads\ThreadScheduler.cpp

DXCommon\MTX\TransactionHandler.cpp

DXCommon\MTX\TransactionQueue.cpp

DXCommon\Threads\WorkerThread.cpp

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 23 of 33

The following non-default settings should then be made to the project settings. Any other settings should
not prevent a successful build.

Section/Entry Release Setting Debug Setting

General

 Character Set Not Set Not Set

C/C++

 Preprocessor

 Preprocessor Definitions WIN32;NDEBUG;_CONSOLE;W32 WIN32;_DEBUG;_CONSOLE;W32

 Code Generation

 Runtime Library Multi-threaded (/MT) Multi-threaded Debug DLL (/MTd)

 Struct Member Alignment 1 Byte (/Zp1) 1 Byte (/Zp1)

 Command Line

 Additional Options /Oy- /Oy-

Linker

 Input

 Additional Dependencies notes.lib winhttp.lib notes.lib winhttp.lib Dbghelp.lib
Psapi.lib

Notes:

Static linking of the runtime is used as since the advent of Side-By-Side (SXS) assembly of applications it
is increasingly common to find server environments that do not have the latest C/C++ Runtime manifests
installed.

/Zp1 packing is a Notes API requirement as all Notes API structures are packed and not padded or
member aligned.

/Oy- is an important setting, without it the compiler will use the Frame Pointer as a general purpose
register rather than pointing to the current frame, this will cause any NSD dump to be complete garbage
and make debugging virtually impossible.

The additional libraries for the debug settings Dbghelp.lib and Psapi.lib are used to enable additional
debug capabilities such as memory leak detection that are provided by DXCommon kernel modules.

Linux:

A makefile is supplied in the source distribution of QACLMorph. The makefile is listed below along with
any specific notes. The Makefile supports the following invocation models.

make QACLMorph

This form of the command will build any object modules that are out of date and re-link the executable.

make rebuild QACLMorph

This form of the command will force a rebuild of all object modules and re-link the executable.

make rebuild QACLMorph BV=DBG

 This form of the command will force a rebuild of all object modules with the _DEBUG define set and will
re-link the executable.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 24 of 33

Build for QACLMorph 1.0.5 -- Build: 42 -- DXCommon 3.12.0

Optional targets:

rebuild - force a complete rebuild of the target

macros:

BV=DBG - Builds the DEBUG variant of the target

TARGET = QACLMorph

Define the primary source files

SOURCES = $(TARGET).cpp

SOURCES += AppRunSettings.cpp

SOURCES += AppCommandHandler.cpp

SOURCES += AppTransactionHandler.cpp

SOURCES += DbACLMorpher.cpp

SOURCES += ACLMorphRequest.cpp

HEADERS = $(TARGET).h

HEADERS += AppRunSettings.h

HEADERS += AppCommandHandler.h

HEADERS += AppTransactionHandler.h

HEADERS += DbACLMorpher.h

HEADERS += ACLMorphRequest.h

Define the ACL transformation modules to build

ACL_SOURCES = ../DXCommon/ACL/DXACLRule.cpp

ACL_SOURCES += ../DXCommon/ACL/DXACLRuleSet.cpp

ACL_SOURCES += ../DXCommon/ACL/DXACLRuleSetParser.cpp

ACL_HEADERS = ../DXCommon/ACL/DXACLRule.h

ACL_HEADERS += ../DXCommon/ACL/DXACLRuleSet.h

ACL_HEADERS += ../DXCommon/ACL/DXACLRuleSetParser.h

Define Core modules to build

CORE_SOURCES = ../DXCommon/APIPackages.cpp

CORE_SOURCES += ../DXCommon/DXException.cpp

CORE_SOURCES += ../DXCommon/ExecEnvironment.cpp

CORE_SOURCES += ../DXCommon/ElapsedTimer.cpp

CORE_SOURCES += ../DXCommon/RunSettings.cpp

CORE_SOURCES += ../DXCommon/DXResource.cpp

CORE_SOURCES += ../DXCommon/DXResourceLoader.cpp

CORE_SOURCES += ../DXCommon/DXUCItem.cpp

CORE_SOURCES += ../DXCommon/DXUploadContext.cpp

CORE_HEADERS = ../DXCommon/APIPackages.h

CORE_HEADERS += ../DXCommon/DXException.h

CORE_HEADERS += ../DXCommon/ExecEnvironment.h

CORE_HEADERS += ../DXCommon/ElapsedTimer.h

CORE_HEADERS += ../DXCommon/RunSettings.h

CORE_HEADERS += ../DXCommon/DXGlobals.h

CORE_HEADERS += ../DXCommon/DXResource.h

CORE_HEADERS += ../DXCommon/DXResourceLoader.h

CORE_HEADERS += ../DXCommon/DXUCItem.h

CORE_HEADERS += ../DXCommon/DXUploadContext.h

Define the Multi-Threaded Core modules to build

MTCORE_SOURCES += ../DXCommon/MTX/CommandHandler.cpp

MTCORE_SOURCES += ../DXCommon/MTX/MTExecutive.cpp

MTCORE_SOURCES += ../DXCommon/MTX/TransactionHandler.cpp

MTCORE_SOURCES += ../DXCommon/MTX/TransactionQueue.cpp

MTCORE_SOURCES += ../DXCommon/Threads/ThreadManagerPolicy.cpp

MTCORE_SOURCES += ../DXCommon/Threads/ThreadManager.cpp

MTCORE_SOURCES += ../DXCommon/Threads/ThreadScheduler.cpp

MTCORE_SOURCES += ../DXCommon/Threads/ThreadDispatcher.cpp

MTCORE_SOURCES += ../DXCommon/Threads/ThreadMonitor.cpp

MTCORE_SOURCES += ../DXCommon/Threads/WorkerThread.cpp

MTCORE_SOURCES += ../DXCommon/Threads/Runnable.cpp

MTCORE_HEADERS = ../DXCommon/MTX/CommandHandler.h

MTCORE_HEADERS += ../DXCommon/MTX/MTExecutive.h

MTCORE_HEADERS += ../DXCommon/MTX/TransactionHandler.h

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 25 of 33

MTCORE_HEADERS += ../DXCommon/MTX/TransactionQueue.h

MTCORE_HEADERS += ../DXCommon/Threads/ThreadManagerPolicy.h

MTCORE_HEADERS += ../DXCommon/Threads/ThreadManager.h

MTCORE_HEADERS += ../DXCommon/Threads/ThreadScheduler.h

MTCORE_HEADERS += ../DXCommon/Threads/ThreadDispatcher.h

MTCORE_HEADERS += ../DXCommon/Threads/ThreadMonitor.h

MTCORE_HEADERS += ../DXCommon/Threads/WorkerThread.h

MTCORE_HEADERS += ../DXCommon/Threads/Runnable.h

Define the Domino Explorer modules to build

EXPLORER_SOURCES = ../DXCommon/MTDX/DominoExplorer.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXDbScanner.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXDirScanner.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXFilter.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXReporter.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXRequest.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXServerScanner.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXSpider.cpp

EXPLORER_SOURCES += ../DXCommon/MTDX/DXSStash.cpp

EXPLORER_HEADERS = ../DXCommon/MTDX/DominoExplorer.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXDbScanner.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXDirScanner.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXFilter.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXReporter.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXRequest.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXServerScanner.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXSpider.h

EXPLORER_HEADERS += ../DXCommon/MTDX/DXSStash.h

Define the Object Lists

OBJECTS = $(TARGET).o

OBJECTS += AppRunSettings.o

OBJECTS += AppCommandHandler.o

OBJECTS += AppTransactionHandler.o

OBJECTS += DbACLMorpher.o

OBJECTS += ACLMorphRequest.o

ACL_OBJECTS = DXACLRule.o

ACL_OBJECTS += DXACLRuleSet.o

ACL_OBJECTS += DXACLRuleSetParser.o

CORE_OBJECTS = APIPackages.o

CORE_OBJECTS += DXException.o

CORE_OBJECTS += ExecEnvironment.o

CORE_OBJECTS += ElapsedTimer.o

CORE_OBJECTS += RunSettings.o

CORE_OBJECTS += DXResource.o

CORE_OBJECTS += DXResourceLoader.o

CORE_OBJECTS += DXUCItem.o

CORE_OBJECTS += DXUploadContext.o

MTCORE_OBJECTS = CommandHandler.o

MTCORE_OBJECTS += MTExecutive.o

MTCORE_OBJECTS += TransactionHandler.o

MTCORE_OBJECTS += TransactionQueue.o

MTCORE_OBJECTS += ThreadManagerPolicy.o

MTCORE_OBJECTS += ThreadManager.o

MTCORE_OBJECTS += ThreadScheduler.o

MTCORE_OBJECTS += ThreadDispatcher.o

MTCORE_OBJECTS += ThreadMonitor.o

MTCORE_OBJECTS += WorkerThread.o

MTCORE_OBJECTS += Runnable.o

EXPLORER_OBJECTS = DominoExplorer.o

EXPLORER_OBJECTS += DXDbScanner.o

EXPLORER_OBJECTS += DXDirScanner.o

EXPLORER_OBJECTS += DXFilter.o

EXPLORER_OBJECTS += DXReporter.o

EXPLORER_OBJECTS += DXRequest.o

EXPLORER_OBJECTS += DXServerScanner.o

EXPLORER_OBJECTS += DXSpider.o

EXPLORER_OBJECTS += DXSStash.o

Define the build options

CC = g++

CCOPTS = -c -march=i486

NOTESDIR = $(LOTUS)/notes/latest/linux

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 26 of 33

LINKOPTS = -o qaclmorph

INCDIR = $(LOTUS)/notesapi/include

LIBS = -lnotes -lm -lnsl -lpthread -lc -lresolv -ldl -lcurl

DEFINES = -DUNIX -DLINUX -DHANDLE_IS_32BITS

Rules to build DEBUG or release targets

$(TARGET): $(OBJECTS) $(ACL_OBJECTS) $(CORE_OBJECTS) $(MTCORE_OBJECTS) $(EXPLORER_OBJECTS)

 $(CC) $(LINKOPTS) $(OBJECTS) $(ACL_OBJECTS) $(CORE_OBJECTS) $(MTCORE_OBJECTS)

$(EXPLORER_OBJECTS) -L$(NOTESDIR) -Wl,-rpath-link $(NOTESDIR) $(LIBS)

$(OBJECTS): $(SOURCES) $(HEADERS)

ifeq ($(BV), DBG)

 $(CC) $(CCOPTS) $(DEFINES) -D_DEBUG -I$(INCDIR) $(SOURCES)

else

 $(CC) $(CCOPTS) $(DEFINES) -I$(INCDIR) $(SOURCES)

endif

$(ACL_OBJECTS): $(ACL_SOURCES) $(ACL_HEADERS)

ifeq ($(BV), DBG)

 $(CC) $(CCOPTS) $(DEFINES) -D_DEBUG -I$(INCDIR) $(ACL_SOURCES)

else

 $(CC) $(CCOPTS) $(DEFINES) -I$(INCDIR) $(ACL_SOURCES)

endif

$(CORE_OBJECTS): $(CORE_SOURCES) $(CORE_HEADERS)

ifeq ($(BV), DBG)

 $(CC) $(CCOPTS) $(DEFINES) -D_DEBUG -I$(INCDIR) $(CORE_SOURCES)

else

 $(CC) $(CCOPTS) $(DEFINES) -I$(INCDIR) $(CORE_SOURCES)

endif

$(MTCORE_OBJECTS): $(MTCORE_SOURCES) $(MTCORE_HEADERS)

ifeq ($(BV), DBG)

 $(CC) $(CCOPTS) $(DEFINES) -D_DEBUG -I$(INCDIR) $(MTCORE_SOURCES)

else

 $(CC) $(CCOPTS) $(DEFINES) -I$(INCDIR) $(MTCORE_SOURCES)

endif

$(EXPLORER_OBJECTS): $(EXPLORER_SOURCES) $(EXPLORER_HEADERS)

ifeq ($(BV), DBG)

 $(CC) $(CCOPTS) $(DEFINES) -D_DEBUG -I$(INCDIR) $(EXPLORER_SOURCES)

else

 $(CC) $(CCOPTS) $(DEFINES) -I$(INCDIR) $(EXPLORER_SOURCES)

endif

Phony target for forcing a complete rebuild

.PHONY : rebuild

rebuild:

 -rm *.o

 -rm qaclmorph

Notes:

There is currently little difference between the release and debug builds of the QACLMorph application,
the debugging helper that adds additional runtime debugging capabilities to the application is only
available for the Windows builds. There is an enhancement request to port the debugging helper
functionality to Linux.

The executable name is coerced to lower case “qaclmorph”, this is a Domino convention.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 27 of 33

7.1.7 Building and Deploying the Application

Windows:

Select “Build” and then “Build QACLMorph”.

Copy the resulting executable (QACLMorph.exe) and the associated Program Debug Database
(QACLMorph.pdb) to the Notes Executable directory on the server where you want to run the Add-In.

Linux:

From the QACLMorph project directory issue the “make QACLMorph” command or the “make rebuild
QACLMorph” or the “make rebuild QACLMorph BV=DBG” according to the type of build that you require.

make QACLMorph

This form of the command will build any object modules that are out of date and re-link the executable.

make rebuild QACLMorph

This form of the command will force a rebuild of all object modules and re-link the executable.

make rebuild QACLMorph BV=DBG

 This form of the command will force a rebuild of all object modules with the _DEBUG define set and will
re-link the executable.

Copy the resulting executable (qaclmorph) to the Notes Executable directory where you want to run the
Add-In. According to your local security policies and Domino install you may need to have an
administrator copy the executable and possibly change ownership of the executable.

The default ownership and attributes indicated by the Notes API documentation are as follows.

chown server qaclmorph

chgrp notes qaclmorph

chmod 2555 qaclmorph

7.2 Installing the QACLMorph Control Database

The installation of the control database is done from a “Virtual Template” that is available on the internet,
this section assumes that you have available and installed the Remote Database Create (Windows:
RDBCreate.exe Linux: rdbcreate) tool. If you do not have this tool then download the DXTool source for
RDBCreate and build it. Refer to the “Using RDBCreate” manual.

7.2.1 Install the Database

From a command window go to the Notes Executable directory where RDBCreate exists enter the
following command.

RDBCreate <server name> <database name> <templateURL> -V

Where:

<server name> is the abbreviated name of the server on which you want to install the control database.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 28 of 33

<database name> is the name of the control database relative to the notes data directory.

<templateURL> is the URL for the Virtual Template you wish to install.

For the QACLMorph Control Database, use the following URL:

http://hmnl.nl/HMNL/DX/VTTDepot.nsf/Payloads/qaclmorph.manifest/$File/manifest.xml

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 29 of 33

8. Starting QACLMorph on the Server
The QACLMorph application can now be loaded on the server where it was installed. From a remote
console session with the server issue the following command.

“load QACLMorph <database name> <options>”

Where:

<database name> is the name of the control database relative to the notes data directory.

<options> are the command line options for the applications. (see below).

8.1.1 Command Line Options

The following command line options are available with QACLMorph.

Option Meaning

-V Sets the logging level to verbose. This provides more detailed logging messages to
be written to the application log.

-T[:nn] Sets the logging level to trace, This is a diagnostic setting that provides detailed
logging messages to the application log. The optional “nn” setting restricts tracing to
a designated are of the DXCommon kernel code. Refer to the DXGlobals.h header
file for values that this setting can take.

-D[:nn] Sets the logging level to trace, This is a diagnostic setting that provides even more
detailed logging messages to the application log. The optional “nn” setting restricts
tracing to a designated are of the DXCommon kernel code. Refer to the
DXGlobals.h header file for values that this setting can take.

-E Sets console echo mode on. Application log entries are written to documents in the
control database. When console echo mode is on then all application log messages
are echoed to the Domino console and the Domino system log database.

-X:nn Sets the number of transactions that can execute in parallel. This defaults to 1.
Therefore, by default, QACLMorph transactions will execute serially.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 30 of 33

9. QACLMorph Tell Commands

9.1 QACLMorph Message Queues

While it is running certain aspects of QACLMorph operation can be controlled by the use of “Tell”
commands entered through the Domino console.

QACLMorph is capable of running multiple instances on the same Domino server, each instance will have
a separate message queue that it monitors for commands. When an instance of QACLMorph is started it
locates the lowest number available to use for the message queue name in the form
“QACLMorph”<suffix> where <suffix> is a digit that starts at 1. Therefore the first, or only, instance of
QACLMorph can be addressed in the form “Tell QACLMorph1 <command>”.

9.2 Commands

9.2.1 Quit

The quit command is not normally used, however, during a server shutdown the server issues this
command on all message queues. QACLMorph will respond to the command by shutting down.

9.2.2 Stop [now]

The stop command is used to shut down QACLMorph in an orderly manner. Any transactions that are
currently running will be completed, no new transactions are dispatched and the Server Add-In will shut
down. Specifying the optional “now” parameter on the stop command causes QACLMorph to fail any
transactions that are currently running and then shut down in an orderly manner.

9.2.3 Abort

The abort command is an alias for the “stop now” command.

9.2.4 Suspend

The suspend command tells QACLMorph to stop executing new transactions from the ready queue. Any
transactions that are currently executing are completed, the Add-In task continues to run but will not
process any transactions until the “resume” command is executed.

9.2.5 Resume

The resume command is the antithesis of the suspend command. The command only has any effect if the
Add-In task is in the suspended state, then it causes the processor to resume processing transactions
from the ready queue.

9.2.6 Verbose

The verbose command causes the logging mode of the processor to be switched to verbose mode, in this
mode more detailed logging is made to the application log.

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 31 of 33

9.2.7 Loud

The loud command is an alias for the verbose command.

9.2.8 Terse

The terse command switches the logging mode of the processor back to normal mode, in this mode
minimal logging is done to the application log.

9.2.9 Quiet

The quiet command is an alias for the terse command.

9.2.10 Echo [on|off]

The echo command without any parameters is the same as the “echo on” command it will cause all
current application logging to be echoed to the Domino Server console and therefore the Domino log. The
“echo off” command turns off the echo of application logging.

9.2.11 Noecho

The noecho command is an alias for “echo off”.

9.2.12 Trace [nnn]

The trace command sets the processor logging functions into trace mode. The number on the command
designates a particular are of function to be traced. Refer to the DXGlobals.h header file for the different
trace area specifications.

This command should only be used for problem diagnosis.

In this mode very detailed logging is produced in the application log.

9.2.13 Debug [nnn]

The debug command sets the processor logging functions into debug mode. The number on the
command designates a particular are of function to be traced. Refer to the DXGlobals.h header file for the
different trace area specifications.

This command should only be used for problem diagnosis.

In this mode even more detailed logging is produced in the application log.

9.2.14 Refresh

The refresh command causes the QACLMorph processor to finish processing any transactions that are
currently processing and then reset the processing environment to the default configuration and resume
processing transactions.

9.2.15 Status

The status command causes the processor to display the current state of the processor and some
volumetric information about how many transactions have been processed.

Sample output:

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 32 of 33

07/12/2010 08:51:50 CET: DXR0907I: Command received: status. [500]

07/12/2010 08:51:50 CET: QAM0201I: 1 transaction have been dispatched, 1 completed, 0 are

running, max concurrency is 1. [500]

07/12/2010 08:51:50 CET: QAM0208I: Transactions marked Completed: 0, Error: 1, Retried: 0,

Delayed: 0. [500]

9.2.16 Stats [thread|debug]

The stats command causes a number of current values of statistics from the DXCommon kernel to be
written to the applications log. The thread parameter on the command adds certain additional “per thread”
statistics to be output. The debug operand on the command causes the “per thread” statistics to be
included along with more details. Understanding these statistics is beyond the scope of this document,
refer to the documents about the architecture of the DXCommon kernel to gain insight into the meaning of
these statistics.

9.2.17 Panic [message]

The panic command will trigger an NSD exception from within the processor. This is an extreme
diagnostic aid as it will cause an NSD of the entire server. The optional message is recorded in the log
and in the memory displayed in the NSD dump.

9.2.18 Maxtrans nn

The maxtrans command causes the processor to change the number of transactions that can be
executed in parallel to be changed to the value supplied on the command.

9.3 Debugging Commands

The following commands are ONLY available in the debug compiled version of the QACLMorph
executable.

9.3.1 Memory

The memory command shows a report on current memory usage by the application, these statistics are
reported to the server console and the application log.

9.3.2 Dump

The dump command causes the processor to generate a Windows Core Minidump of the application. The
application continues to execute so the command can be issued a number of times during an execution of
the application. The contents of the dump can be investigated using the standard Windows debugging
tools (e..g. windbg).

DX Tools - Using QACLMorph 1.0

Document: DXTOOLS-USING-QACLMORPH-1-0 Date: 06/05/2012 15:42
Version: 1.0
Owner: HMNL b.v. Status: Final
Subject: Using QACLMorph 1.0 Page 33 of 33

10. Common Usage Scenarios

10.1 De-Merger

In this scenario the “ACME Corporation” is spinning off a subsidiary to become the “Independent
Corporation”, Network separation is already underway and Data Center facilities have already been
created for the new entity. QCopy will be used to move Domino mail-files and application databases from
the ACME infrastructure into the new Independent infrastructure. Before the databases will be copied
from the Stepping Stone server(s) to the ACL of all the databases will have their ACLs adjusted so that
ACME related entries are removed and the Independent ACL standards will be applied. Old
administration groups and servers will be removed and replaced with new groups and servers.

Common DMZ or Shared Network Space

ACME Network Space Independent Network Space

ACME Server(s)

Stepping Stone Server(s)

Independent Server(s)

QACLMorph

QCopy 2

	1. Introduction to QACLMorph
	2. QACLMorph Transactions
	2.1 Source Specification
	2.1.1 Source Server
	2.1.2 Source Database
	2.1.3 ACL Specification
	2.1.4 Allow Recursion

	2.2 Generic Transaction Options
	2.2.1 Status
	2.2.2 Transaction Request ID
	2.2.3 Approval Status
	2.2.4 Urgent Flag

	2.3 Scheduling Options
	2.3.1 First Run Time
	2.3.2 Repeat

	3. XML Document
	3.1 Sections
	3.2 Entries
	3.2.1 ACLRule Node
	3.2.1.1 Name Attribute
	3.2.1.2 Pattern Attribute
	3.2.1.3 Type Attribute
	3.2.1.4 Level Attribute

	3.2.2 Option Node
	3.2.2.1 Type Attribute
	3.2.2.2 Set Attribute

	3.2.3 Role Node
	3.2.3.1 Name Attribute
	3.2.3.2 Assign Attribute

	3.3 Example Rule Sets
	3.3.1 Enforcing A Server Entry
	3.3.2 Removing Administrators from the ACL
	3.3.3 Preparing Databases for Archiving

	4. Feeder Transactions
	4.1 General
	4.1.1 Source Selection
	4.1.2 Action and Error Processing Options
	4.1.3 Method of Operation

	5. Transaction Workflow
	5.1 New Transaction
	5.2 Approved Transaction
	5.3 In Progress Transaction
	5.4 Completed Transaction
	5.5 Error Transaction
	5.6 Retried Transaction
	5.7 Delayed Transaction

	6. Programmatic Interface
	6.1 Creating New Transactions
	6.2 Monitoring Transaction Progress

	7. Installing QACLMorph
	7.1 Building the QACLMOrph Server Add-In Task
	7.1.1 Reference Environments
	7.1.2 Notes API Installation
	7.1.3 Directory Structure
	7.1.4 Installing the DXCommon Kernel Sources
	7.1.5 Installing the QACLMorph Sources
	7.1.6 Build Settings
	7.1.7 Building and Deploying the Application

	7.2 Installing the QACLMorph Control Database
	7.2.1 Install the Database

	8. Starting QACLMorph on the Server
	8.1.1 Command Line Options

	9. QACLMorph Tell Commands
	9.1 QACLMorph Message Queues
	9.2 Commands
	9.2.1 Quit
	9.2.2 Stop [now]
	9.2.3 Abort
	9.2.4 Suspend
	9.2.5 Resume
	9.2.6 Verbose
	9.2.7 Loud
	9.2.8 Terse
	9.2.9 Quiet
	9.2.10 Echo [on|off]
	9.2.11 Noecho
	9.2.12 Trace [nnn]
	9.2.13 Debug [nnn]
	9.2.14 Refresh
	9.2.15 Status
	9.2.16 Stats [thread|debug]
	9.2.17 Panic [message]
	9.2.18 Maxtrans nn

	9.3 Debugging Commands
	9.3.1 Memory
	9.3.2 Dump

	10. Common Usage Scenarios
	10.1 De-Merger

